УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ КРИСТАЛЛОГРАФИИ им. А.В. ШУБНИКОВА РАН

На правах рукописи

ПРОСЕКОВ ПАВЕЛ АНДРЕЕВИЧ

МНОГОВОЛНОВАЯ И КВАЗИМНОГОВОЛНОВАЯ ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ В КРИСТАЛЛАХ ПАРАТЕЛЛУРИТА И ЛАНГАТАТА

Специальность 01.04.07 - «Физика конденсированного состояния»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Москва 2011

Работа выполнена в **Учреждении Российской академии наук** Институте кристаллографии им. А.В. Шубникова РАН

Научный руководитель:	член-корреспондент РАН				
	Ковальчук Михаил Валентинович				
Официальные оппоненты:	доктор физико-математических наук Чуев Михаил Александрович				
	кандидат физико-математических наук профессор Смирнов Игорь Сергеевич				
Ведущая организация:	Национальный исследовательский технологический университет «Московский институт стали и сплавов»				

Защита состоится « ____ » *декабря 2011 г. в ______ ч.* на заседании диссертационного совета Д 002.114.01 при **Учреждении Российской академии наук Институте кристаллографии им. А.В. Шубникова РАН** по адресу: 119333, г. Москва, Ленинский проспект, 59.

(НИТУ МИСиС).

С диссертацией можно ознакомиться в библиотеке ИК РАН.

Автореферат разослан « ___ » ноября 2011 г.

Ученый секретарь

диссертационного совета Д 002.114.01 кандидат физико-математических наук

В.М. Каневский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Интенсивное развитие физики конденсированного состояния, современного материаловедения, нанотехнологий, а также биотехнологий в значительной степени связано с прогрессом в области создания и совершенствования методов исследования на основе рассеяния рентгеновских лучей. В ряду указанных методов рентгенодифракционные занимают особое место в силу высокой чувствительности и информативности в исследованиях атомной структуры и структурных дефектов конденсированных сред.

Изучение дефектной структуры и особенностей динамического рассеяния рентгеновских лучей в органических и неорганических кристаллах в настоящее время являются актуальными проблемами физики реальных кристаллов и имеют большое научное и практическое значение. В том числе, рентгенодифракционные исследования дефектной структуры почти совершенных монокристаллов, свойства которых существенно зависят от присутствия в них структурных дефектов (дислокаций, вариаций состава по кристаллу, примесных атомов, включений других фаз и т.д.).

Для такого типа исследований весьма эффективными и широко используемыми являются методы рентгеновской дифрактометрии высокого разрешения, основанные на измерении кривых дифракционного отражения (**КДО**), поскольку тонкая структура КДО чувствительна к малейшим искажениям кристаллической решетки в исследуемом образце.

Одним из особо перспективных направлений в рентгенодифракционных исследованиях является **многоволновая дифракция**, когда условия дифракции одновременно реализуются для нескольких систем атомных плоскостей кристаллической решетки. Методы на основе многоволновой рентгеновской дифракции являются фазочувствительными, к числу которых также относятся методы рентгеновской голографии и стоячих рентгеновских волн (СРВ). Первые два позволяют определять фазовые соотношения с последующей расшифровкой структуры исследуемого образца, а метод СРВ в условиях возбуждения вторичного излучения, позволяет с точностью до долей ангстрема определять местоположение атомов конкретного химического элемента. Особенно многообещающей является возможность создания на основе методов высокоразрешающей рентгеновской дифрактометрии и многоволновой дифракции в комбинации с методом СРВ трехмерного фазочувствительного метода исследований кристаллов.

Еще одним актуальным направлением исследований на основе многоволновой дифракции является возможность прецизионного определения локальных значений

параметров кристаллической решетки и их вариаций с высоким пространственным разрешением. В этой связи, стоит отметить, что в последнее время особый интерес приобрело изучение наномасштабных сверхструктурных образований, зачастую дающих новые качества свойствам таких соединений. Прецизионное определение локальных значений параметров решетки может быть осуществлено, как в чисто многоволновой геометрии дифракции, так и в условиях отхода от многоволновой точки, когда реализуется так называемая **квазимноговолновая дифракция**. Поэтому исследования особенностей многоволновой дифракции и реализация локальных измерений параметров решетки кристаллов в условиях квазимноговолновой дифракции представляются актуальными.

<u>Цели работы:</u>

- Исследование многоволновой дифракции при различных соотношениях интенсивностей взаимодействующих рефлексов на примере кристалла парателлурита (TeO₂) в схеме высокоразрешающей рентгеновской дифрактометрии.
- Развитие метода высокоразрешающей дифрактометрии в квазимноговолновой геометрии для исследования локальных параметров кристаллов средних сингоний, и на этой основе проведение изучения микромасштабных неоднородностей параметров кристаллической решетки технически важных кристаллов лантан-галлиевого танталата (LGT) и парателлурита.

В соответствии с поставленными целями в работе решались следующие задачи:

- Разработка специальных алгоритма расчета и методик поиска схем компланарной многоволновой и квазимноговолновой дифракции для широкого круга кристаллов кристаллов высшей и средних сингоний. Поиск компланарных квазимноговолновых схем дифракции пар рефлексов, соответствующих заданной длине волны излучения рентгеновских трубок (Ag, Mo, Cu и т.д.), кристаллической структуре и требуемой точности измерений (~10⁻⁵ 10⁻⁶), для кристаллов LGT, TeO₂, Si.
- Проведение исследования особенностей трехволновой дифракции в кристалле TeO₂ с использованием лабораторного источника рентгеновского излучения и источника СИ при различных соотношениях интенсивностей взаимодействующих рефлексов, различных величинах вклада эффекта виртуального брэгговского рассеяния.
- 3. Развитие метода высокоразрешающей рентгеновской дифрактометрии в квазимноговолновой геометрии для прецизионного определения локальных значений параметров кристаллической решетки в кристаллах средних сингоний.

Проведение локальных измерений микромасштабных неоднородностей параметров решетки с использованием лабораторного источника излучения в кристаллах LGT, TeO₂.

 Изучение возможности перестройки взаимного углового положения пары компланарных квазимноговолновых рефлексов с помощью ультразвуковой модуляции межплоскостного расстояния Δd.

<u>Научная новизна:</u>

- 1. Впервые экспериментально в схеме высокоразрешающей рентгеновской дифрактометрии исследован общий случай трехволновой дифракции при произвольном соотношении интенсивностей взаимодействующих рефлексов. Проведенные исследования трехволновой дифракции при участии сильного и слабого рефлексов в кристалле TeO₂ выявили многоволновое взаимодействие за пределами трехволновой области и образование тонкой структуры взаимодействия в пределах трехволновой области.
- Метод высокоразрешающей рентгеновской дифрактометрии на основе квазимноговолновой дифракции впервые развит для применения в исследованиях локальных неоднородностей параметров решетки кристаллов средних сингоний.
- Предложены и экспериментально реализованы два способа управления созданным низкочастотным ультразвуком градиентом деформации: с помощью изменения частоты ультразвуковых колебаний, путем регулировки амплитуды ультразвуковых колебаний.
- 4. Предложен и экспериментально реализован способ регулировки углового смещения брэгговских пиков путем ультразвуковой модуляции межплоскостного расстояния для перестройки взаимного положения пары рефлексов в компланарной геометрии квазимноговолновой дифракции.

<u>Практическая значимость</u>: Изучение закономерностей трехволновой рентгеновской дифракции при произвольном соотношении интенсивностей взаимодействующих рефлексов расширяет круг объектов, в которых может использоваться трехволновое взаимодействие для получения более детальной информации о дефектной структуре кристаллов.

Алгоритм расчета и методики поиска компланарных схем многоволновой и квазимноговолновой дифракции в кристаллах средних сингоний позволяют (осуществляя целенаправленный поиск подходящих пар рефлексов) применять метод высокоразрешающей дифрактометрии для прецизионного изучения многоволновой

(трехволновой) дифракции и проведения исследований локальных вариаций параметров кристаллической решетки для большого числа кристаллических материалов.

Локальные измерения микромасштабных неоднородностей параметров кристаллической решетки методом высокоразрешающей рентгеновской дифрактометрии в квазимноговолновой геометрии могут быть использованы для решения проблем, связанных с исследованием распределения дефектов в кристаллах и внесением на этой основе корректив в технологии выращивания кристаллов.

Регулировка взаимного углового положения пары рефлексов путем ультразвуковой модуляции межплоскостного расстояния в методе высокоразрешающей дифрактометрии на основе квазимноговолновой дифракции позволяет перейти к многоволновой геометрии без перестройки рентгенодифракционной схемы, что снимает запрет на использование некоторых пар (при фиксированной длине волны излучения) и расширяет возможности метода.

На защиту выносятся следующие основные результаты и положения:

- Алгоритм расчета и методики поиска пар компланарных рефлексов, применимые в исследованиях кристаллов средних сингоний методом высокоразрешающей рентгеновской дифрактометрии в двух режимах дифракции:
 - в многоволновой геометрии, для прецизионного изучения трехволнового взаимодействия;
 - в квазимноговолновой геометрии, для проведения локальных измерений параметров кристаллической решетки.
- 2. Результаты исследований методом высокоразрешающей рентгеновской дифрактометрии в многоволновой геометрии, демонстрирующие особенности трехволновой дифракции в кристалле TeO₂ при различных соотношениях интенсивностей взаимодействующих рефлексов. Особо исследован случай, когда один из рефлексов является сильным, при сильном связующем рефлексе, а другой – слабым: выявлены сильные искажения формы КДО далеко за пределами трехволновой области; выявлено образование тонкой структуры взаимодействия в трехволновой области. Эксперименты проведены с использованием, как лабораторного, так и синхротронного источников излучения.
- Результаты исследования локальных вариаций и микромасштабных неоднородностей параметров кристаллической решетки образцов LGT и TeO₂ методом высокоразрешающей рентгеновской дифрактометрии на основе квазимноговолновой дифракции.

- Экспериментальная реализация двух предложенных способов управления созданным низкочастотным ультразвуком градиентом деформаций кристаллической решетки: 1) с помощью изменения частоты ультразвуковых колебаний;
 путем регулировки амплитуды ультразвуковых колебаний.
- 5. Экспериментальная реализация предложенного способа управления угловым смещением брэгговского пика для перестройки взаимного положения пары рефлексов в компланарной геометрии квазимноговолновой дифракции путем ультразвуковой модуляции межплоскостного расстояния в кристалле.

<u>Личный вклад автора</u>: Все экспериментальные измерения на лабораторном источнике проводились автором диссертации лично. Автором проведены расчеты пар компланарных рефлексов для реализации схем многоволновой и квазимноговолновой дифракции, предложен способ регулировки углового расстояния между рефлексами с помощью ультразвуковой модуляции межплоскостного расстояния. Автор участвовал в проведении экспериментов на источнике СИ, в обработке экспериментальных данных. Обсуждение результатов и их интерпретация проводились совместно с научным руководителем и соавторами публикаций.

<u>Апробация результатов работы</u>: Материалы, вошедшие в диссертационную работу, докладывались на молодежном конкурсе научных работ ИК РАН в 2007 году. Результаты работы докладывались и обсуждались на следующих семинарах и конференциях:

- Первая международная научная школа-семинар «Современные методы анализа дифракционных данных», Великий Новгород, 2007 г.;
- VI Национальная конференция по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов. Москва, 2007 г.;
- 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2008), Linz (Austria), 2008 r.;
- XIII Национальная конференция по росту кристаллов. Москва, 2008 г.;
- Международная конференция «Диффузное рассеяние на пучках синхротронного излучения», Алушта (Крым, Украина), 2009 г.;
- VII Национальная конференция «Рентгеновское, синхротронное излучения, нейтроны и электроны для исследования наносистем и материалов. Нано-био-инфокогнитивные технологии». Москва, 2009 г.;
- 26th European Crystallographic Meeting, Darmstadt (Germany), 2010 r.

Публикации: В диссертацию включены результаты, опубликованные в 13 публикациях, из которых 5 статей в рецензируемых научных изданиях из списка ВАК.

<u>Структура и объем диссертации:</u> Диссертация состоит из введения, пяти глав, выводов и списка цитируемой литературы. Объем диссертации составляет 179 страниц, включая 76 рисунков, 11 таблиц и список литературы из 129 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во **введении** содержится обоснование актуальности проводимых исследований, и излагаются цели диссертационной работы. Отмечены новизна и практическая значимость работы, представлены сведения об апробации результатов работы и публикациях.

<u>Глава 1</u> имеет обзорный характер и посвящена многоволновой рентгеновской дифракции в кристаллах и возможностям ее использования для разработки фазочувствительных методов исследования.

В <u>главе 2</u> представлены алгоритм расчета и методики поиска схем компланарной дифракции в многоволновой и квазимноговолновой геометрии в кристаллах высшей и средних сингоний. Приведены описание и анализ особенностей поиска таких схем – пар компланарных многоволновых и квазимноговолновых рефлексов; рассмотрены возможности регулировки их взаимного углового положения.

Возможность практического использования метода рентгеновской дифрактометрии в квазимноговолновой геометрии (**Рис. 1***a*), предложенного изначально для кубических кристаллов в [1], определяется, главным образом, выбором пары компланарных рефлексов исследуемого кристалла, соответственно, длине волны используемого излучения и требуемой точности измерений.

Рис. 1. а) Схема компланарной квазимноговолновой дифракции для пары рефлексов $(h_1k_1l_1), (h_2k_2l_2);$ РИ – рентгеновский источник; Ψ_0 – угловое расстояние между дифракционными максимумами рефлексов $(h_1k_1l_1)$ и $(h_2k_2l_2);$ б) – Стереографическая проекция; $A_1A_2 = \Psi_0; O_1O_2 = \varphi; \varphi$ – угол между плоскостями $(h_1k_1l_1)$ и $(h_2k_2l_2)$. θ_1, θ_2 – углы Брэгга рефлексов $(h_1k_1l_1)$ и $(h_2k_2l_2),$ соответственно.

Были разработаны применимые для широкого круга кристаллов алгоритм расчета и методики поиска пар компланарных рефлексов, используемых в методе высокоразрешающей дифрактометрии в двух режимах дифракции: в многоволновой геометрии, для прецизионного изучения трехволнового взаимодействия; в квазимноговолновой геометрии, для проведения исследований локальных неоднородностей параметров кристаллической решетки. Алгоритм расчета является обобщенным, и применим не только для кристаллов кубической сингонии, но и для кристаллов средних сингоний, – тетрагональной и гексагональной/тригональной. С использованием разработанного алгоритма расчета может быть получено множество схем дифракции, из которых затем выбираются определенные пары многоволновых или квазимноговолновых рефлексов. Пары квазимноговолновых рефлексов подбираются, согласно описанным в настоящей главе, методикам поиска и критериям выбора пар, в числе которых, относительная точность метода и пространственное разрешение измерений.

В случае кристаллов средних сингоний предложено, в качестве одного из критериев выбора пар рефлексов, использовать условие малости чувствительности Ψ_0 к изменению одного из двух (*a* или *c*) параметров кристаллической решетки. Предложено использовать условие $l_1 = l_2 = 0$; пары рефлексов вида (h_1k_10 , h_2k_20) позволяют определить значение параметра *a* независимо от *c* и получить количественную информацию о его изменениях в заданном направлении вдоль поверхности исследуемого образца.

В результате расчетов получена серия пар компланарных квазимноговолновых рефлексов в тригональном кристалле LGT, тетрагональном TeO₂ и кубическом Si при заданных длинах волн характеристических линий наиболее используемых в лабораторных исследованиях рентгеновских трубок (Cu, Mo, Ag и т.д.).

Представлены описание и анализ трех способов регулировки взаимного углового положения пары рефлексов в условиях дифракции в многоволновой и квазимноговолновой геометрии: 1) регулировка подстройкой азимутального угла $\Delta \varphi$; 2) регулировка подстройкой по энергии излучения $\Delta \lambda$; 3) регулировка с помощью модуляции межплоскостного расстояния Δd . Приведены описание и анализ особенностей всех указанных способов регулировки.

Показано, что при использовании описанного метода может быть осуществлена непрерывная перестройка высокоразрешающих схем дифракции, – переход между геометриями многоволновой и квазимноговолновой дифракции. В отличие от квазимноговолнового случая, в многоволновой геометрии используемые рефлексы не

могут считаться независимыми, вследствие когерентного взаимодействия дифрагированных пучков, что приводит к возможности прецизионного изучения многоволновой дифракции в компланарной или почти компланарной (квазикомпланарной) геометрии.

Показано, что при неизменной длине волны излучения λ регулировка $\Delta \phi$ взаимного углового положения пары рефлексов может обеспечивать перестройку геометрических параметров схемы дифракции, которая позволяет перейти от квазимноговолновой дифракции, когда отражения почти двухволновые, к случаю многоволновой дифракции (точки *M* пересечения кривых $h_1k_1l_1$ и $h_2k_2l_2$, см. **Рис. 16**). Другой способ регулировки взаимного положения пары рефлексов может быть реализован путем вариации длины волны излучения $\Delta \lambda$. Экспериментально данный способ может быть осуществлен с использованием синхротронного излучения (СИ). Третий способ регулировки взаимного положения пары рефлексов в рентгенодифракционном эксперименте может быть реализован в кристаллах, подвергнутых ультразвуковым колебаниям. При этом физика рентгеноакустических взаимодействий существенно зависит от соотношения между длиной волны ультразвука и шириной рентгеновского пучка на образце [2].

Рассматривается способ модуляции межплоскостного расстояния ∆*d*, который заключается в использовании длинноволнового ультразвука для возбуждения в кристалле ультразвукового поля деформаций кристаллической решетки с помощью составного резонатора [3]. На основе анализа указанного способа было предложено использовать однородную ультразвуковую деформацию кристаллической решетки по апертуре рентгеновского пучка для реализации управления угловым смещением брэгговского пика при перестройке взаимного углового положения пары рефлексов в компланарной геометрии квазимноговолновой дифракции.

Предложены два способа управления созданным низкочастотным ультразвуком градиентом деформации: с помощью изменения частоты (**Рис. 2***a*), путем регулировки амплитуды ультразвуковых колебаний (**Рис. 2***b*). Динамическое изменение градиента деформаций в кристалле позволяет создавать аналоги статических градиентных кристаллов с возможностью оперативного управления их параметрами и, соответственно, характеристиками дифрагированного пучка.

В <u>главе 3</u> описаны экспериментальная установка, образцы кристаллов LGT и TeO₂ для исследований, результаты предварительных измерений двухкристальных КДО. Экспериментальная установка была создана на базе трехкристального рентгеновского спектрометра TPC [4] и представляет собой лабораторный измерительный

Рис. 2. Показано возрастание градиента ультразвуковой деформации при увеличении: а) — частоты колебаний $f(f_1 < f_2 < f_3)$; б) — амплитуды колебаний $U_1 < U_2 < U_3$; $\Delta d/d_0$ — относительное изменение межплоскостного расстояния, являющееся мерой ультразвуковой деформации; L — длина кристаллической пластины; U — амплитуда управляющего сигнала.

комплекс для рентгенодифракционных и рентгеноакустических экспериментов в условиях многоволновой и квазимноговолновой дифракции (**Рис. 3**). С учетом особенностей многоволнового и квазимноговолнового экспериментов в схеме высокоразрешающей дифрактометрии была подготовлена техническая база для проведения исследований трехволновой дифракции и измерений локальных вариаций параметров решетки в исследуемых кристаллах. Экспериментальная установка позволяет интегрировать систему возбуждения/контроля ультразвука и проводить эксперименты в указанных режимах дифракции, с использованием ультразвуковой модуляции межплоскостного расстояния Δd исследуемого кристалла. При этом установка оснащена системой стробоскопической регистрации дифрагированного пучка, что позволяет проводить рентгеноакустические эксперименты с временным разрешением.

Рис. 3. Общая схема экспериментальной установки для проведения рентгенодифракционных и рентгеноакустических экспериментов в условиях многоволновой и квазимноговолновой дифракции.

Объекты исследования в настоящей работе – кристалл парателлурита, TeO₂; кристалл лантан-галлиевого танталата, La₃Ga_{5.5}Ta_{0.5}O₁₄ (лангатат, LGT).

Кристаллы TeO₂ [5] принадлежат к тетрагональной сингонии группы 422 и являются искусственными одноосными кристаллами, обладающими уникальными акустическими свойствами, что позволяет наблюдать в них весьма сильный акустооптический эффект. Монокристаллы TeO_2 являются наиболее используемыми при создании большинства акустооптических приборов для видимого и ближнего инфракрасного диапазонов спектра – модуляторов, фильтров, дефлекторов и др. К настоящему времени выращиваются в виде крупных монокристаллов весьма высокого качества. В работе использовались образцы кристалла TeO_2 , изготовленные в виде пластин с нормалью вдоль [110], выращенного и предоставленного в ИК РАН (В.А. Ломонов, лаб. Акустооптики и акустоэлектроники). Этот срез характеризуется ярким рефлексом (220).

Кристаллы LGT [6] принадлежат к тригональной сингонии группы 32. Они широко используются для разнообразных устройств пьезотехники на поверхностных и объемных акустических волнах. К настоящему времени выращиваются в виде крупных кристаллов достаточно высокого качества. В качестве исследуемых образцов использовались кристаллические пластины кристалла LGT с нормалью вдоль [110], выращенного ОАО «Фомос-Материалс», а также предоставленного МГУ (Б.В. Милль, Физический факультет). Образцы LGT были изготовлены из разных частей кристаллической були (верх, середина, низ), отражающих различные этапы процесса кристаллизации.

Исследуемые образцы были изготовлены в виде пластин с заданными размерами, ориентацией и требуемым качеством поверхностей для проведения рентгенодифракционных и рентгеноакустических экспериментов.

В <u>главе 4</u> представлены результаты исследования трехволновой дифракции в кристалле TeO₂ с использованием лабораторного источника рентгеновского излучения и источника СИ при различных соотношениях интенсивностей взаимодействующих рефлексов, различных величинах вклада эффекта виртуального брэгговского рассеяния.

С использованием описанных в главе 2 алгоритма расчета и методик поиска пар компланарных рефлексов для реализации схем многоволновой и квазимноговолновой дифракции были найдены пары рефлексов кристалла TeO₂. Некоторые из таких пар приведены в *Таблице 1* для геометрии дифракции, показанной на **Рис. 1**.

В результате расчетов были получены пары рефлексов кристалла TeO₂ с различным соотношением интенсивностей для прецизионного изучения трехволновой дифракции с использованием длины волны рентгеновского излучения λ[MoK_{α1}].

Τ	ā	б	п	IJ	u	а	1
	<i>u</i>	0.			ч	0	-

$(h_l k_l l_l)$	$(h_2k_2l_2)$	$ heta_{B1},^{\circ}$	θ _{<i>B</i>2} , °	$ \Psi_0 , "$	λ
(421)	(200)	46.33	18.68	86.9	CuKa1
(441)	(32-2)	65.72	37.72	9.2	
(371)	(220)	34.30	12.04	100.9	
(464)	(220)	34.29	12.04	63.1	
(533)	(646)	26.88	36.92	3.4	ΜοΚα1
(557)	(557) (110)		5.99	218.9	
(376)	(366)	38.85	34.62	5.6	
(267)	(255)	26.67	21.29	11.0	ΔαΚα1
(466)	(777)	28.28	39.09	13.7	AZICAI
(244)	(214)	72.80	38.87	92.3	CoK α1

Методом высокоразрешающей дифрактометрии в многоволновой геометрии проводились эксперименты с использованием рентгеновской трубки и излучения $MoK_{\alpha 1}$ с перестройкой положения взаимодействующих рефлексов кристалла TeO_2 с помощью азимутальной отстройки $\Delta \phi$; проводились эксперименты с применением СИ с изменением взаимного положения взаимодействующих рефлексов путем вариации длины волны $\Delta \lambda$ излучения на станции ПРО, канал 6.6 КЦСИ НИЦ «Курчатовский институт» [7]. Экспериментально реализована трехволновая рентгеновская дифракция для нескольких предварительно найденных пар рефлексов (110, 557), (220, 371), (220, 464), (220, 370).

Многоволновая геометрия дифракции была реализована в лабораторных условиях для схем (110, 557), (220, 371), (220, 464); было выявлено, что во всех трех случаях дифракционная картина трехволнового взаимодействия различна, и это видно по форме КДО второго рефлекса. На **Рис. 4** для сравнения приведены КДО пар рефлексов (110, 557) и (220, 371).

Особый интерес представляют схемы дифракции (220, 371) и (220, 464). Обнаружено, что они демонстрируют ранее не исследованный случай суперпозиции амплитудного и виртуального [8] (резонансного) типов рассеяния. Эти термины впервые были введены в [9], а теория виртуального рассеяния так же представлена в [10]. Виртуальное рассеяние обусловлено соотношением интенсивностей взаимо-

Рис. 4. Экспериментальные КДО кристалла TeO₂, полученные в схеме высокоразрешающей двухкристальной дифрактометрии: а) случай трехволновой дифракции (110, 557), «классический вид» взаимодействия; б) трехволновой случай (220, 371), взаимодействие при наличии большого вклада эффекта виртуального брэгговского рассеяния.

действующих рефлексов: первый рефлекс (220) – достаточно сильный, а рефлексы (371), (464) существенно слабее при сильном связующем третьем рефлексе – (151), (244), соответственно. Эффект виртуального рассеяния, ранее наблюдаемый на запрещенном рефлексе в схеме Реннингера [11], в настоящей работе наблюдался в двухкристальной схеме высокоразрешающей дифрактометрии. На **Рис. 5** представлены результаты экспериментального наблюдения сильного эффекта виртуального рассеяния при изучении почти компланарной трехволновой (220, 371) дифракции в кристалле TeO₂, и сравнение экспериментальных результатов с теоретическими. Теоретический расчет и компьютерное моделирование были проведены В.Г. Коном с использованием алгоритмов, описанных в [12,13].

В данном эксперименте некоторые особенности трехволновых КДО, которые были теоретически предсказаны, не проявлялись или проявлялись частично. Для выявления указанных особенностей была разработана (+m₁, -m₂, +n)-схема двух-кристальной дифрактометрии с двумя монохроматорами, которая позволила провести эксперименты с разрешением приближенным к теории, но потребовала выполнения весьма сложных и точных измерений (точная юстировка образца, высокое угловое разрешение измерений при достаточно большом времени накопления).

В $(+m_1, -m_2, +n)$ -схеме монохроматоры устанавливались в непараллельное положение, что обеспечивало слабодисперсионное рассеяния для используемых (220, 371), (220, 464) пар рефлексов кристалла TeO₂, с использованием которых

Рис. 5. Левая колонка: экспериментальные КДО при различных значениях азимутального угла через многоволновую область с постоянным шагом; Правая колонка: соответствующие теоретические кривые зависимости коэффициентов отражения. Тонкие кривые – отражение 220, толстые кривые – отражение 371. Значения относительного сдвига энергии от многоволновой точки в мкрад поставлены на графиках.

проводилось прецизионное изучение особенностей трехволновой дифракции с учетом вклада эффекта виртуального брэгговского рассеяния.

Экспериментальные результаты (**Рис. 6**) показали хорошее соответствие расчетным КДО. Расчеты были проведены В.Г. Коном на основе компьютерного моделирования и теоретического анализа полученных кривых.

Характерной особенностью эффекта виртуального брэгговского рассеяния является то, что угловая зависимость интенсивности первого (сильного) рефлекса и ее форма почти не изменяются в трехволновой области, в то время как для второго (слабого) рефлекса, наблюдаются очень сильные изменения не только в трехволновой области, но и далеко за ее пределами, что связано с вариацией параметра двухволновой дифракции за счет виртуального рассеяния. Наблюдаемые изменения имеют асимметричный характер и позволяют определить триплетную комбинацию фаз структурных факторов.

Рис. 6. Экспериментальные КДО пары рефлексов (220, 464) при различных значениях угловой азимутальной отстройки вблизи трехволновой точки.

Представлены (**Рис. 7, 8**) результаты первого экспериментального исследования трехволновой компланарной дифракции рентгеновских лучей в монокристалле TeO₂ с использованием синхротронного излучения (СИ) на Курчатовском источнике СИ. Исследовались четыре случая дифракции: пары рефлексов (220, 371), (220, 464), (220, 370) и (110, 557). В случаях (110, 557), (220, 371) виртуальный механизм проявлял себя слабо, а в случаях (220, 464), (220, 370) – виртуальное рассеяние является весьма сильным.

Рассматривая случай трехволновой компланарной дифракции монохроматической плоской волны, поляризованной перпендикулярно плоскости рассеяния, система уравнений для двухволновой дифракции для исследуемых пар рефлексов имеет следующий вид:

$$\begin{split} g_{00}E_0 &+ g_{02}E_2 = \gamma_0 \varepsilon E_0 \\ g_{20}E_0 &+ (g_{02} - \alpha_2)E_2 = \gamma_2 \varepsilon E_2, \\ \textbf{rge} \\ g_{00} &= \chi_{00} + \chi_{01} \chi_{10} / \alpha_1; \\ g_{20} &= \chi_{20} + \chi_{21} \chi_{10} / \alpha_1; \\ g_{22} &= \chi_{22} + \chi_{21} \chi_{12} / \alpha_1. \end{split}$$

Перенормировка параметра динамической двухволновой дифракции для второго (371) или (464) рефлекса за счет виртуального рассеяния определяется выражением:

 $g_{20} = \chi_{20} (1 + C/\alpha_1), \quad C = \chi_{21} \chi_{10}/\chi_{20}.$

Здесь χ_{mn} – параметры двухволновой дифракции, при этом индексы 10 соответствуют рефлексу (220), а индексы 21 – связующему рефлексу (151) или (244). Параметры α_1 , α_2 определяет отклонения от условий Брэгга для первого (220) и второго (371) или (464) рефлексов, соответственно. Предполагается, что он имеет достаточно большую величину, т.е. первый рефлекс в этой области имеет малую интенсивность.

Прямой расчет комплексного коэффициента C дает следующие значения: $C = -(5.01 + 0.74i) \ 10^{-6}$ для рефлекса (371); $C = -(10.60 + 1.09i) \ 10^{-6}$ для рефлекса

Рис. 7. Слева: экспериментальные КДО рефлекса 371 при различных значениях энергии вблизи трехволновой точки. Цифрами на левой оси показаны номера шагов изменения энергии фотонов. **Справа:** КДО сильного рефлекса 220. Эта зависимость практически не менялась при изменении энергии. Интенсивность нормирована на интенсивность падающего пучка.

Рис. 8. Слева: экспериментальные КДО рефлекса 464 при различных значениях энергии вблизи трехволновой точки. Цифрами на левой оси показаны номера шагов изменения энергии фотонов. **Справа:** КДО сильного рефлекса 220. Эта зависимость практически не менялась при изменении энергии. Интенсивность нормирована на интенсивность падающего пучка.

(464). Во втором случае коэффициент *С* в два раза больше, чем в первом. Это объясняет более сильное проявление виртуального рассеяния в случае (220, 464).

В <u>главе 5</u> представлены результаты исследований локальных вариаций и микромасштабных неоднородностей параметров решетки кристаллов LGT и TeO₂ методом высокоразрешающей рентгеновской дифрактометрии на основе квазимноговолновой дифракции.

С использованием разработанного алгоритма проведен расчет, по результатам которого выбраны пары компланарных рефлексов для реализации схем квазимноговолновой дифракции кристаллов лангатата LGT. В *Таблице 2* приведены некоторые найденные пары рефлексов для проведения измерений локальных вариаций

Таблица 2

$(h_lk_ll_l)$	$(h_2k_2l_2)$	$\theta_{B1},$ °	θ _{<i>B</i>2} , °	$ \Psi_0 , "$	λ	3	D, мкм (при щели 100 мкм)
Лангатат (LGT)							
(524)	(310)	64.71	22.94	79.7	CuKa1	0.6	110
(025)	(155)	51.48	74.39	115.5	Cuixui	0.4	110
(311)	(555)	11.09	33.56	112.4		2.1	180
(260)	(110)	21.03	4.95	54.7		3.4	1160
(770)	(260)	37.12	21.03	68.4	ΜοΚα1	2.7	170
(770)	(150)	37.12	16.09	86.1		2.1	170
(610)	(400)	19.05	11.48	87.0		7.0	500
(625)	(222)	23.16	10.04	37.8	AgKa1	4.0	570
(002)	(206)	6.27	19.69	194.9		4.0	300
(441)	(322)	62.50	40.47	78.8	CoKα1	0.9	160
Парателлурит (ТеО ₂)							
(220)	(371)	12.04	34.30	100.9	ΜοΚα1	2.1	260

параметров решетки в геометрии квазимноговолновой дифракции с использованием излучения λ[MoKα1].

Для экспериментальной реализации указанных измерений параметров кристаллической решетки были учтены аппаратные и методические особенности проведения квазимноговолнового эксперимента. Подобраны и описаны условия, обеспечивающие измерение относительных величин параметров решетки с точностью $\sim 10^{-5}$ – 10^{-6} . Описаны методики юстировки и выполнения измерений: определение статистической ошибки измерения угла Ψ_0 , азимутальное сканирование (**Рис. 9**), про-

Рис. 9. Экспериментально зарегистрированная зависимость углового расстояния Ψ_0 между рефлексами (260, 770) от азимутального положения кристалла φ .

странственное сканирование. Показана возможность независимого измерения только одного параметра *а* кристаллической решетки с помощью одной пары компланарных квазимноговолновых рефлексов.

Проведены измерения локальных вариаций параметра решетки *а* кристаллов LGT методом квазимноговолновой дифракции с использованием пары компланарных рефлексов (260, 770), отвечающей всем методическим условиям определения относительных величин параметра *а* с точностью 2.6×10⁻⁶

при пространственном сканировании с

разрешением 140 мкм и 90 мкм. Шаг сканирования (**Рис. 10***a*) составлял 140 мкм, просканированная область – 3 мм. Шаг сканирования (**Рис. 10***b*) – 660 мкм, область сканирования – 13 мм. Измерения проводились на серии образцов, вырезанных из различных частей кристалла, в направлении вытягивания кристалла и по фронту кристаллизации.

Рис. 10. Изменение параметра кристаллической решетки а в направлении Y[100] кристаллической пластины LGT X-среза (110). Размер рентгеновского пучка — 140 мкм. а) Просканированная область — 3 мм, шаг сканирования 140 мкм. б) Просканированная область — 13 мм, шаг сканирования 660 мкм. Пара рефлексов (260, 770).

Проведены измерения локальных вариаций параметров решетки кристалла TeO₂ методом квазимноговолновой дифракции с использованием пары компланарных рефлексов (220, 371). Относительная точность измерений составила 2.0×10^{-6} при пространственном разрешении 150 мкм (**Рис. 11**).

Рис. 11. Экспериментально зарегистрированная зависимость углового расстояния (Ψ_0) между рефлексами (220, 371) парателлурита (левая шкала ординат) и относительное изменение параметра кристаллической решетки *a* (правая шкала ординат) при перемещении рентгеновского пучка по поверхности грани (110).

Экспериментально продемонстрирована возможность управления угловым смещением брэгговского пика для перестройки взаимного углового положения пары рефлексов Ψ_0 (**Рис. 12**) в компланарной геометрии квазимноговолновой дифракции путем ультразвуковой модуляции межплоскостного расстояния Δd .

Рис. 12. Относительное изменение экспериментальной величины углового расстояния Ψ_0 в фазах колебаний составного резонатора 0 и ± $\pi/2$. Положение пары рефлексов (660, 771) в фазе Φ = 0 фиксировано.

Перестройка осуществлена с использованием излучения МоК_β и пары рефлексов (660, 771) кристалла Si. Амплитуда перестройки углового расстояния достигала величины $\Delta \Psi_0 = (41 \pm 1)$ ". При этом амплитуда ультразвуковой деформации составляет $\Delta d/d_0 = 1.4 \times 10^{-3}$.

Выводы и основные результаты работы.

 В схеме высокоразрешающей дифрактометрии впервые проведено экспериментальное исследование трехволновой дифракции при различных величинах вклада виртуального брэгговского рассеяния.

На примере кристалла TeO₂ обнаружены принципиальные особенности, наблюдаемые при сильной разнице интенсивностей взаимодействующих рефлексов:

- 1) образование тонкой структуры взаимодействия в трехволновой области;
- сильные искажения формы кривых качания далеко за пределами трехволновой области; при этом характер искажений зависит от взаимного положения взаимодействующих рефлексов.
- 2. Развит метод высокоразрешающей дифрактометрии для проведения исследований кристаллов средних сингоний:
 - 1) метод позволяет проводить исследования:
 - в многоволновой геометрии, для прецизионного изучения трехволнового взаимодействия;
 - в квазимноговолновой геометрии для проведения локальных измерений параметров кристаллической решетки, с точностью ~10⁻⁵–10⁻⁶, и их изменений по образцу с высоким пространственным разрешением ~10 - 100 мкм;
 - разработаны алгоритмы расчета и методики поиска многоволновых и квазимноговолновых схем дифракции, и найдены схемы в кристаллах TeO₂, LGT и Si при заданных длинах волн лабораторных источников (рентгеновских трубок – Cu, Mo, Co и т.д.).
- На основе анализа нескольких способов регулировки взаимного углового положения пары рефлексов для перестройки многоволновой и квазимноговолновой геометрий дифракции, автором предложен новый способ – регулировка с помощью модуляции межплоскостного расстояния.

- Экспериментально реализован способ перестройки взаимного углового положения пары рефлексов в компланарной геометрии квазимноговолновой дифракции путем ультразвуковой модуляции межплоскостного расстояния Δd. Перестройка осуществлена для случая (660, 771) кристалла Si (излучение λ[MoK_β]). Амплитуда перестройки ΔΨ₀ = 41 угл. с.
- 5. Проведены измерения микромасштабных неоднородностей параметра решетки *а* в кристаллах LGT и TeO₂ в режиме квазимноговолновой дифракции:
 - 1) с использованием пары (770, 260) кристалла LGT, λ [MoK_{$\alpha 1$}]
 - с пространственным разрешением 140 мкм и 90 мкм;
 - точность метода $\delta a/a = 2.6 \times 10^{-6}$;
 - 2) с использованием пары (220, 371) кристалла TeO₂, λ[MoK_{α1}]
 - с пространственным разрешением 150 мкм;
 - точность метода $\delta a/a = 2.0 \times 10^{-6}$.

СПИСОК ЦИТИРУЕМЫХ РАБОТ

- [1] *Isomae S., Kishino S., Takagi et al //* J.Appl.Cryst. 1976. V.9. P.342.
- [2] *Благов А.Е., Ковальчук М.В., Кон В.Г. и др. //* ЖЭТФ. 128, вып. 5(11), 2005, С. 893— 903.
- [3] *Благов А.Е., Ковальчук М.В., Кон В.Г. и др.//* Кристаллография, 2006. Т.51, № 5, С. 1–6.
- [4] М.В. Ковальчук, Э.К. Ковьев, З.Г. Пинскер // Кристаллография. 1975. Т. 20. С. 142.
- [5] Кондратьев И.П., Мурадян Л.А., Писаревский Ю.В. и др. // Кристаллография.
 1987. Т.32. С. 609.
- [6] B.V. Mill, Yu.V. Pisarevski. // Int. Proc. 2000. Frequency Control Simposium. IEEE/EIA. Kansas City. 2000. P. 133.
- [7] Интернет pecypc: http://www.kcsr.kiae.ru/stations/k6.6.php
- [8] Chapmann L.D., Yoder D.R., Colella R. // Phys. Rev. Lett. 1981. V. 46. P. 1578.
- [9] В.Г. Кон // Кристаллография. 1988. Т. 33, вып. 3, С. 567.
- [10] Hoier R., Martinsen K. // Acta Cryst. A. 1983. V. 39. P. 854.
- [11] Schmidt M.C., Colella R. // Phys. Rev. Lett. 1985. V. 55. P. 715.
- [12] Кон В.Г. // ЖЭТФ. 1994. Т. 105. вып. З. С. 665.
- [13] Кон В.Г. // Кристаллография, 2006. Т. 51. № 6. С. 1001–1005.

Список авторских публикаций по теме диссертации:

1. П.А. Просеков, А.Е. Благов, М.В. Ковальчук, Ю.В. Писаревский. Управление градиентом деформации кристаллической решетки, созданным низкочастотным ультразвуком. // Сборник трудов Первой международной научной школы-семинара «Современные методы анализа дифракционных данных», с. 117, Великий Новгород, 2007 г.

2. А.Е. Благов, М.В. Ковальчук, Ю.В. Писаревский, П.А. Просеков. Сильное рентгеноакустическое взаимодействие при брэгговской дифракции на длинноволновых ультразвуковых колебаниях. // Сборник трудов VI Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов. (РСНЭ-2007). С. 443.

3. А.Е. Благов, М.В. Ковальчук, Ю.В. Писаревский, П.А. Просеков. Управление градиентом деформации кристаллической решетки, созданным низкочастотным ультразвуком. // Кристаллография. 2008. Т. 53. № 3. С. 411 – 415.

4. A.E. Blagov, M.V. Kovalchuk, P.A. Prosekov and Yu.V. Pisarevsky. The progress of X-rayacoustic optics on the basis on long-wave ultrasonic vibration. // Proc. of 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP-2008). P. WE118.

5. П.А. Просеков, А.Е. Благов, Ю.В. Писаревский, М.В. Ковальчук, В.Г. Кон. Изучение микромасштабных неоднородностей параметра кристаллической решетки лангатата методом трехволновой компланарной рентгеновской дифрактометрии. // Сборник трудов XIII Национальной конференции по росту кристаллов (НКРК-2008). С. 98.

6. М.В. Колдаева, А.С. Усеинов, М.С. Григорьева, А.В. Виноградов, П.А. Просеков, Ю.В. Писаревский. Методы выявления и изучения свойств микроразмерных областей неоднородности в кристаллах на примере полосчатой структуры лангаситов. // Сборник трудов XIII Национальной конференции по росту кристаллов (НКРК-2008). С. 304.

7. А.Е. Благов, П.А. Просеков, Ю.В. Грищенко, М.Л. Занавескин, Б.С. Рощин, А.В. Буташин, В.А. Федоров, В.М. Каневский, В.Е. Асадчиков «Особенности рентгеновской дифракции на монокристаллах сапфира с наноструктурированной поверхностью». Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2009, № 6, с. 30–33.

8. А.Е. Благов, М.В. Ковальчук, В.Г. Кон, Ю.В. Писаревский, П.А. Просеков. Особенности многоволновой рентгеновской дифракции в кристаллах парателлурита (TeO₂). // Сборник трудов VII Национальной конференции «Рентгеновское, синхротронное излучения, нейтроны и электроны для исследования наносистем и материалов. Нанобио-инфо-когнитивные технологии» (РСНЭ-НБИК 2009). С. 512.

9. А.Е. Благов, М.В. Ковальчук, Ю.В. Писаревский, П.А. Просеков. Сравнение возможностей измерения микромасштабных неоднородностей кристаллической структуры с помощью метода многоволновой дифракции и по взаимному положению двух компланарных независимых рефлексов. // Сборник трудов РСНЭ-НБИК 2009. С. 568.

10. А.Е. Благов, М.В. Ковальчук, В.Г. Кон, Ю.В. Писаревский, П.А. Просеков. Наблюдение сильного виртуального рассеяния в условиях трехволновой (220, 371) дифракции рентгеновских лучей в монокристалле TeO₂. // Кристаллография. 2010. T. 55. № 1. C. 12 – 17.

11. А.Е. Благов, М.В. Декапольцев, М.В. Ковальчук, В.В. Лидер, Ю.В. Писаревский, П.А. Просеков. Измерение локальных значений параметров решетки кристаллов средних сингоний с использованием нескольких компланарных рефлексов. // Кристаллография. 2010. Т. 55. № 6. С. 1003–1008.

12. A.E. Blagov, P.A. Prosekov, M.V. Kovalchuk, V.G. Kohn, Yu.V. Pisarevskii. Peculiarities of x-ray multiwave diffraction in paratellurite crystals (TeO2). // Proc. of 26th European Crystallographic Meeting (ECM26 2010) P. s291.

13. А.Е. Благов, М.В. Ковальчук, В.Г. Кон, Э.Х. Мухамеджанов, Ю.В. Писаревский, П.А. Просеков. Исследование трехволновой компланарной дифракции рентгеновских лучей в монокристалле TeO₂ с использованием синхротронного излучения. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011. № 9. С. 12 – 17.