УДК: 548.5;548.3 На правах рукописи

Ксенофонтов Дмитрий Александрович

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА РОСТ КРИСТАЛЛОВ РАСТВОР-РАСПЛАВНЫМ МЕТОДОМ

01.04.18 – кристаллография, физика кристаллов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук Работа выполнена в Учреждении Российской академии наук Институте кристаллографии им. А.В. Шубникова РАН.

Научные руководители:

доктор химических наук

Демьянец Людмила Николаевна

доктор химических наук

Иванов-Шиц Алексей Кириллович

Официальные оппоненты:

доктор химических наук, профессор Кауль Андрей Рафаилович

доктор физико-математических наук Писаревский Юрий Владимирович

Ведущая организация

Санкт-Петербургский Государственный университет, химический факультет

Защита состоится «22» <u>июня</u> 2010 г. в <u>13</u> часов на заседании диссертационного совета Д 002.114.01 в Учреждении Российской академии наук Институте кристаллографии им. А.В. Шубникова РАН: 119333, г. Москва, Ленинский проспект, д. 59.

С диссертацией можно ознакомиться в библиотеке ИК РАН.

Автореферат разослан «21» мая 2010г.

Ученый секретарь диссертационного совета Д 002.114.01 кандидат физико-математических наук

В.М. Каневский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Получение однородных по размерам и составу материалов с заданными и воспроизводимыми характеристиками является одной из актуальных задач современного материаловедения. Общеизвестно влияние условий синтеза на физико-химические и размерные характеристики неорганических веществ: помимо таких факторов, концентрация реагентов, температура реакционной среды, исходных pH, комплексообразователя, необходимо учитывать и возможное влияние различных внешних полей – гравитационных, магнитных, электрических. Развитие научных представлений о кристаллообразовании свидетельствует, что для понимания механизмов роста кристаллов важную роль в ростовом эксперименте может сыграть использование дополнительных параметров, которые поддаются внешнему контролируемому управлению со стороны экспериментатора. В ЭТОМ ключе представляется перспективным использование в качестве внешнего воздействия постоянного/знакопеременного электрического поля. Следует отметить, что применение метода кристаллических получения электролиза ДЛЯ материалов (электрокристаллизация) хорошо известно, однако подавляющем большинстве случаев этот метод применялся для получения металлов и покрытий. Кроме того, почти во всех случаях кристаллы, получаемые электрокристаллизацией, не удается получить в условиях отсутствия электрического поля. До настоящего времени практически отсутствовали работы, в которых осуществлялось бы целенаправленное изучение характера воздействия электрического поля на процесс кристаллизации и на свойства получаемых кристаллов. Приложение электрического тока к системе «кристалл-расплав» – это попытка управлять ростом кристаллов, т.е. создать благоприятные условия с помощью контролируемого движения ионов в расплаве и таким образом изменять химический состав, кристаллическую структуру и свойства получаемых кристаллов. С учетом вышесказанного были сформулированы цель и задачи настоящего исследования.

<u>Цель работы.</u> Работа направлена на исследование процессов и механизмов кристаллизации неорганических соединений методом растворрасплавной кристаллизации с целью определения влияния одновременного воздействия электрического и температурного полей на процессы кристаллизации, формирование кристаллических материалов и их характеристики.

Для достижения указанной цели решались следующие задачи:

- разработка и создание экспериментальной установки для проведения ростового эксперимента с наложением электрического поля;
- выяснение специфического влияния величины и знака потенциала, значения протекающего тока на процесс роста кристаллов;

- выяснение влияния конфигурации системы электродов, типа электродов на скорость роста и размеры кристаллов;
- сопоставление химического и фазового состава, структуры, физических свойств кристаллов, выращенных из раствора в расплаве при разных параметрах электрических и тепловых полей.

Объекты исследования. Основная часть исследований проводилась на системах, в которых возможно формирование твердых электролитов особыми физическими свойствами соединений c (высокой проводимостью). Выбор таких объектов связан необходимостью обеспечить неразрывность электрической цепи в системе «растущий кристалл – расплав». Были выбраны системы:

```
Li_3PO_4 - Li_4GeO_4 - Li_2MoO_4 - LiF (твердый электролит Li_{3+x}P_{1-x}Ge_xO_4); Li_2TiGeO_5 - Li_2MoO_4 - Li_2WO_4 (твердый электролит Li_2TiGeO_5); La_2O_3 - MoO_3 - Li_2MoO_4 (твердые электролиты La_2Mo_2O_9, Li_xLa_yMoO_4).
```

Дополнительно была проведена серия опытов для проверки влияния внешнего электрического поля на рост непроводящих кристаллов в системе $Y_2O_3 - Yb_2O_3 - Al_2O_3 - B_2O_3 - K_2Mo_3O_{10}$ (соединение $Y_{1-x}Yb_xAl_3(BO_3)_4$).

Научная новизна

- Разработаны основы нового метода роста кристаллов метода растворрасплавной кристаллизации в условиях дополнительного направленного контролируемого внешнего воздействия - наложения электрического поля. Выбор в качестве объектов исследования ионных проводников даёт возможность использовать протекающий ионный ток дополнительного параметра кристаллизации. Новизна развиваемого подхода определяется проведением кристаллизации при одновременном воздействии на неравновесную систему расплав-кристалл теплового и электрического полей.
- В условиях наложения внешнего управляемого электрического поля получены кристаллы:
 - $\begin{array}{l} Li_{3+x}P_{1-x}Ge_xO_4,\ Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4\ (\text{система}\ Li_3PO_4-Li_4GeO_4-Li_2MoO_4\\ -\ LiF);\ Li_2TiGeO_5\ (\text{система}\ Li_2CO_3-TiO_2-GeO_2-Li_2MoO_4-Li_2WO_4);\\ Li_{0.49}La_{0.49}MoO_{3.98},\ Li_{0.59}La_{0.44}MoO_{3.96}\ (\text{система}\ La_2O_3-MoO_3-Li_2MoO_4);\\ Y_{1-x}Yb_xAl_3(BO_3)_4\ (\text{система}\ Y_2O_3-Yb_2O_3-Al_2O_3-B_2O_3-K_2Mo_3O_{10}). \end{array}$
- Выявлена связь физических свойств, структурных особенностей синтезированных соединений с условиями их кристаллизации. Отмечено изменение параметров процесса кристаллизации, типа и состава кристаллизуемого соединения при приложении к системам постоянного и знакопеременного электрического поля (V = 0.15 1B).
- Получены данные по проводимости новой кристаллической фазы $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$, установлена температура обратимого фазового

перехода и предложены возможные пути миграции ионов в данной структуре.

• Для высокотемпературной модификации твердого раствора $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ определена кристаллическая структура при комнатной температуре и проведены высокотемпературные рентгенодифракционные эксперименты.

<u>Практическая значимость</u>. Полученные экспериментальные данные важны для дальнейшего развития методов кристаллизации неорганических соединений, как научная основа эффективной технологии создания материалов с заданными функциональными характеристиками, дополняют существующий справочный материал по твердым электролитам. Полученные результаты используются в лекциях и практических занятиях по курсам «Рентгенография минералов» и «Рентгеноструктурный анализ», читаемых студентам геохимических специальностей на геологическом факультете МГУ.

Данные по исследованным новым соединениям включены в международные базы данных ICSD и ICDD.

Защищаемые положения.

- Влияние одновременного наложения электрического и теплового полей при раствор-расплавной кристаллизации на процессы и продукты кристаллизации в системах «кристалл расплав».
- Методика выращивания кристаллов твердых электролитов из раствора в расплаве при одновременном воздействии электрического и теплового полей.
- Синтез новой кристаллической фазы $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ со структурой типа γ - Li_3PO_4 .
- Изменение состава кристаллизующегося соединения в зависимости от напряжения и полярности электрического поля.
- Понижение температуры гомогенизации расплава при приложении к системе переменного «пилообразного» электрического тока.
- Данные высокотемпературных рентгенодифракционных исследований новой фазы $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$; модель миграции ионов в структуре при повышении температуры.

Основные экспериментальные методики.

Синтез и рост кристаллов:

- метод кристаллизации из раствора в расплаве при снижении температуры;
- модифицированный метод кристаллизации из раствора в расплаве при снижении температуры и приложении электрического поля;
- твердофазный синтез.

Первичная характеризация:

- рентгенофазовый анализ при комнатной и повышенных температурах (дифрактометр STOE STADI MP, Германия, λ CuK $_{\alpha 1}$);
- рентгеноструктурный анализ (монокристальный дифрактометр Nonius Карра ССD, λ Мо K_{α} , Xcalibur S CCD);
- дифференциально-термический и термогравиметрический анализ (дериватограф Sinku-Riko TGD 7000, Япония);
- электронно-зондовая микроскопия (микроанализатор CamSkan 4DV, Япония);
- масс-спектрометрия с индуктивно-связанной плазмой (масс-спектрометр Element-2, Германия);
- измерение проводимости (мосты RLC 4284A, США; Hioki 3532-50, Япония).

Структурные исследования:

- рентгеноструктурный анализ и уточнение структур полученных материалов по монокристальным данным (комплекс программ SHELX-97, Jana-2000);
- расшифровка и уточнение структур полученных материалов по порошковым данным (комплексы программ WinX^{Pow}, WYRIETE 3.3, FullProf).

Достоверность и обоснованность полученных результатов основаны на современных использовании методов исследования, взаимно полученные математической подтверждающих данные, обработке результатов эксперимента использовании приборов, прошедших И государственную поверку.

Личный вклад автора

Основу диссертации составляют исследования, выполненные непосредственно автором в период 2004-2009 гг. Автором были разработаны методики, модернизированы ростовые установки, проведены эксперименты по исследованию влияния внешнего электрического поля на рост кристаллов из раствора в расплаве. Выполнена характеризация синтезированных объектов методами рентгенофазового, рентгеноструктурного (в том числе при высоких температурах) и термогравиметрического анализов. Ряд инструментальных исследований проведен при участии В.В.Гребенева, Р.М.Закалюкина, Г.Д.Илюшина, при этом автор принимал участие в подготовке образцов к измерениям, обработке и трактовки результатов.

Апробация работы. Основные результаты были диссертации всероссийских представлены международных конференциях, на И проблемам современной неорганической посвященных химии, твердого тела, материаловедения: 14th "International Conference on Crystal Growth", 22nd European Crystallographic Meeting (ECM22), Международная юбилейная конференция «Монокристаллы и их применение в 21 веке – 2004», The International Conference on "CRYSTAL MATERIALS'2005" (ICCM'2005), XX Congress of the International Union of Crystallography (IUCr), XII Национальная конференция по росту кристаллов (НКРК-2006), Конференция «Структура и свойства твердых тел», 11th European Conference On Solid State Chemistry (ECSSC XI), XIII Национальная конференция по росту кристаллов (НКРК-2008), 7-ой Международный симпозиум «Минералогические музеи»

<u>Публикации.</u> Результаты работы представлены в 15 публикациях, из них 5 статей и 10 тезисов докладов.

Структурные данные по новой фазе $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ занесены в компьютерную базу Inorganic Crystal Structure Database под № 415976.

<u>Объем и структура работы.</u> Работа состоит из введения, литературного обзора, экспериментальной части, заключения и библиографии. Общий объем работы составляет 127 страниц, в том числе 42 рисунков, 21 таблиц. Список литературы включает 116 наименований.

Работа выполнялась при поддержке РФФИ (проект № 03-05-64054), совместного гранта РФФИ-БНТС Австрии № 03-05-20011БНТС, гранта Фонда содействия отечественной науке на 2007-2008 год по программе "Лучшие аспиранты РАН".

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ.

Во введении обоснована актуальность темы представленной работы, сформулированы цель и основные задачи, показана научная новизна и практическая значимость выбранного направления исследования.

Глава І. Обзор литературы.

В аналитическом обзоре представлен критический анализ имеющихся сведений о влиянии внешних полей на рост/синтез материалов. Подробно описано явление электрокристаллизации с акцентом на особенности известного электрокристаллизация металлов, как наиболее широко использования электрического поля при кристаллизации соединений. Детально обсуждены особенности электрокристаллизации оксидов и солей и показано, что к настоящему моменту известно ограниченное число работ по электрокристаллизации неметаллических кристаллов сложных галогенидных и оксидных системах. Более того, имеющиеся по этой тематике работы имеют фрагментарный характер и направлены только на решение утилитарной задачи получения кристаллов. Приведен краткий обзор материалов ионики твердого тела, обоснование выбора систем и соединений, исследуемых в данной работе. Приведены литературные данные (составы и строение образующихся кристаллических фаз) по системам Li₃PO₄ – Li₄GeO₄ $-Li_2MoO_4 - LiF$, $Li_2TiGeO_5 - Li_2MoO_4 - Li_2WO_4$; $La_2O_3 - MoO_3 - Li_2MoO_4$; $Y_2O_3 - Yb_2O_3 - Al_2O_3 - B_2O_3 - K_2Mo_3O_{10}$. Сформулированы основные проблемные вопросы в данной области, поставлены цели и задачи исследовательской работы.

Глава II. Экспериментальные методы исследований

В данной главе приведены основные характеристики созданной экспериментальной установки, описаны использованные в работе подходы и методы характеризации и исследования материалов.

Синтез и рост кристаллов.

В работе основным методом для получения кристаллов служил метод спонтанной раствор-расплавной кристаллизации со снижением температуры и локализацией зародышеобразования на вводимом в систему кристаллодержателе.

Для проведения опытов по исследованию влияния электрического поля на процесс кристаллизации, базовая конструкция установки для роста кристаллов из расплава была видоизменена, что позволило прикладывать к системе растущий кристалл — расплав электрическое поле с заданными и контролируемыми параметрами (рис.1).

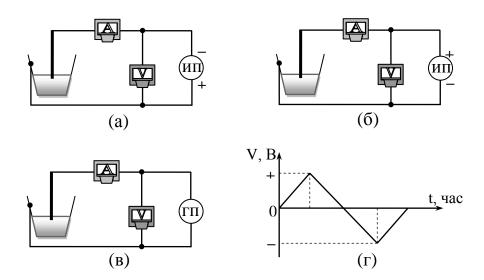


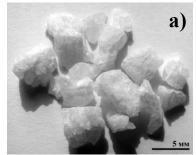
Рис. 1. Схема: (а) и (б) — наложение постоянного электрического поля в разных направлениях, (в) — наложение электрического переменного тока, (г) — конфигурация используемого знакопеременного тока.

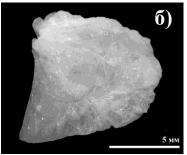
Для каждой системы проведены серии экспериментов, включающие:

- контрольные эксперименты по фазообразованию в данной системе без приложения внешнего электрического поля;
- эксперименты при найденных контрольных параметрах кристаллизации в условиях дополнительного воздействия внешнего электрического поля (постоянный и/или знакопеременный электрический ток).

Значения напряжения электрического тока, прилагаемого к системе, составляли 0.15 В, 0.5 В, 0.8 В и 1 В. В разных сериях экспериментов кристаллодержатель (Рt-стержень) являлся как анодом, так и катодом. Выбор знака прилагаемого напряжения связан с типом потенциально подвижных ионов в растущих кристаллах: например, в случае литийпроводящих твердых электролитов положительно заряженные ионы Li должны притягиваться к

отрицательно заряженному затравочному стержню, на котором происходит кристаллизация вещества. В свою очередь это может (гипотетически) обеспечить более высокий процент вхождения ионов Li в структуру кристаллизуемого объекта.


Глава III. Экспериментальные результаты и обсуждение.


$\underline{Cucmema\ Li_3PO_4 - Li_4GeO_4 - Li_2MoO_4 - LiF.}$

Выращивание кристаллов $Li_{3+x}P_{1-x}Ge_{x}O_{4}$, $Li_{3+x-y}P_{1-x-y}Ge_{x}Mo_{y}O_{4}$.

При синтезе $Li_{3+x}P_{1-x}Ge_xO_4$ раствор-расплавным методом в качестве шихты использовалась эквимолярная (в расчёте на получение твёрдого раствора $Li_{3.5}P_{0.5}Ge_{0.5}O_4$) смесь Li_3PO_4 и Li_4GeO_4 . В качестве растворителя использовалась смесь Li_2MoO_4-2LiF . Формирование твердой фазы на кристаллодержателе инициировалось понижением температуры в интервале $970-950^{\circ}C$ со скоростью охлаждения R=0.1 град/час. Состав полученных образцов определяли по градуировочным кривым зависимости параметров элементарной ячейки твёрдых растворов $Li_{3+x}P_{1-x}Ge_xO_4$ от количества вошедшего германия (x), построенных предварительно для синтезированных керамических материалов системы $Li_3PO_4-Li_4GeO_4$. Уточнение состава проводилось по данным рентгеноструктурного анализа кристаллов.

В экспериментах без приложения к системе электрического поля были получены сростки, состоящие из отдельных прозрачных кристаллов неправильной формы состава $Li_{3,34}P_{0.64}Ge_{0.34}O_4$ (рис. 2).

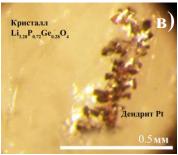


Рис.2. Кристаллы $Li_{3.34}P_{0.64}Ge_{0.34}O_4$ (a; V=0 B), $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ (б; V=0.8 B); дендрит Pt на поверхности кристалла $Li_{3.28}P_{0.72}Ge_{0.28}O_4$ (в; V=1 B).

Последующие эксперименты по синтезу материалов в системе ${\rm Li_3PO_4-Li_4GeO_4-Li_2MoO_4-Li_F}$ проходили в разных конфигурациях воздействия электрического поля в соответствии со схемами, представленными на рис. 1. Состав шихты и температурные условия роста в потенциостатическом режиме при различных напряжениях прилагаемого к системе «кристалл – расплав» поля строго соответствовали условиям, определенным в предварительных экспериментах без приложения электрического поля. Результаты представлены в таблице 1.

В процессе работы был обнаружен эффект <u>изменения величины тока</u> при постоянном напряжении прикладываемого поля. Так, в случае прилагаемого к стержню-катоду постоянного напряжения величиной 0.8 В (потенциостатический режим), на начальной стадии процесса

кристаллизации при погружении стержня в жидкий расплав сила тока составляла ~10 мА, а в конце процесса кристаллизации (после выдержки в течение 3-х недель) — на порядок выше. Поскольку напряжение на протяжении всего процесса поддерживалось постоянным, возрастание тока свидетельствует о падении сопротивления системы расплав-кристалл.

Таблица 1. Кристаллические фазы, синтезированные в системе $\text{Li}_3\text{PO}_4 - \text{Li}_4\text{GeO}_4 - \text{Li}_2\text{MoO}_4 - \text{Li}_7\text{E}$.

	3			
$N_{\underline{0}}$	V, B	Полученные фазы		
п/п		Рt-стержень – катод	Рt-стержень – анод	
1	0	Li _{3.34} P _{0.64} Ge _{0.34} O ₄		
2	0.15	Li ₂ GeO ₃	Li ₂ GeO ₃	
3*	0.5	$\text{Li}_{1.3}\text{Mo}_3\text{O}_8 + \text{Li}_2\text{MoO}_4$	$Li_{3.25}P_{0.75}Ge_{0.25}O_4$	
4	0.8	$\text{Li}_2\text{MoO}_4 + \text{Li}_2\text{GeO}_3$	$Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$	
5**	1	Li _{3.28} P _{0.72} Ge _{0.28} O ₄	Li _{3.36} P _{0.64} Ge _{0.36} O ₄	

^{*}В остаточном расплаве обнаружены кристаллы $Li_{3,29}P_{0,75}Ge_{0,25}O_4$

На наш взгляд, наиболее существенным фактором, приводящим к увеличению тока в системе, является значительное увеличение площади катода, поскольку в результате кристаллизации на поверхности стержня, возрастает эффективная площадь границы раздела расплав-катод. Экспериментальные результаты однозначно свидетельствуют о влиянии электрического поля на состав кристаллизующихсях фаз.

При наложении напряжения в 1 В (как в случае отрицательного, так и в случае положительного заряда стержня) на стержне кристаллизуется германий замещенный литиевый фосфат $Li_{3.28}P_{0.72}Ge_{0.28}O_4$ (стержень - катод) и $Li_{3.36}P_{0.64}Ge_{0.36}O_4$ (стержень – анод) (точный состав образцов определен на основе рентгеноструктурных данных, см. ниже).

При приложении к системе «кристалл – расплав» напряжения выше 1 В наблюдается частичное восстановление материала тигля или стержня (Pt) и осаждение Pt на поверхности кристалла (рис. 2 б), поэтому эксперименты с V>1 В не проводились.

Приложение К системе знакопеременного «пилообразного» электрического тока не приводит к изменению химического состава кристаллизующихся фаз и образованию новых фаз, однако в этих условиях температура полного растворения исходной шихты и, соответственно, <u>температура начала кристаллизации</u> понижаются. При соблюдении всех параметров кристаллизации (состав и навески шихты, скорость нагрева и охлаждения) температура начала кристаллизации падает на 70-90 градусов, причем чем выше напряжение, тем больше эффект понижения температуры. Наблюдаемый эффект может быть связан с особенностями фазовой диаграммы исследуемой системы (положение кривой Ж-Т). Кроме того, пропускание через расплав знакопеременного электрического увеличивает скорость осаждения вещества на кристаллодержатель примерно вдвое, что обуславливается, по-видимому, дополнительным перемешиванием

^{**}На поверхности кристаллов востанавливалась Рt.

расплава за счет движения заряженных ионов и комплексов в расплаве. Отметим, что незначительное внешнее воздействие (V<1 B) приводит к существенному изменению параметров процесса, что необходимо учитывать при разработке технологии роста практически важных кристаллов.

Еще одним существенным экспериментальным результатом можно считать <u>вхождение в кристаллическую структуру атомов Мо</u>: для конфигурации «Рt-стержень – анод», V = 0.8 В, были получены кристаллы состава $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$. Для этой новой фазы был зафиксирован при температуре ~700°С фазовый переход (данные ДТА, ТГА), подтвержденный рентгенографическими исследованиями при высоких температурах (см. Главу IV).

Ионная проводимость $Li_{3+x-y}(P_{1-x-y}Ge_xMo_y)O_4$

На рис. 3 представлена температурная зависимость ионной проводимости кристаллов разных фаз со структурой типа γ-Li₃PO₄. Полученные данные свидетельствуют о сильном возрастании проводимости

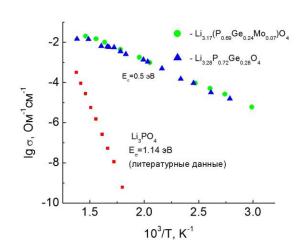


Рис. 3. Ионная проводимость выращенных кристаллов $Li_{3+x-y}(P_{1-x-y}Ge_xMo_y)O_4$

в твердых растворах с одновременным существенным уменьшением энергии активации проводимости. эффект Наблюдаемый связан внедрением структуру В дополнительного количества ионов которые размещаются лития, «каналах» кристаллического каркаса матрицы Li₃PO₄ (об ЭТОМ свидетельствуют структурные данные, см. ниже). Наличие трехмерной вязи пространственно-связанных каналов, по которым могут достаточно легко передвигаться катионы лития, обусловливает эффект суперионной проводимости.

$\underline{Cucmema\ Li_2TiGeO_5 - Li_2MoO_4 - Li_2WO_4}$

Выращивание кристаллов Li_2TiGeO_5 .

На предварительном этапе были проведены опыты по росту кристаллов без приложения электрического поля при использовании синтезированной шихты $\text{Li}_2\text{TiGeO}_5$. Первоначально в качестве растворителя применялся молибдат лития, однако оказалось, что в этом случае кристаллы образуются на дне тигля (или образовавшиеся кристаллы в процессе роста выпадают на дно тигля). Введение Li_2WO_4 в расплав позволяет "поднять" кристаллы, однако рабочая температура при этом возрастает, а растворимость $\text{Li}_2\text{TiGeO}_5$ — падает. Экспериментально был установлен оптимальный состав солевого растворителя: $5\text{Li}_2\text{MoO}_4 + 1\text{Li}_2\text{WO}_4$ (мол.). Полное растворение достигается

при температуре 1030°С и массовом соотношении (Li₂TiGeO₅)/(5Li₂MoO₄ + Li₂WO₄) = 6:5.

При скорости охлаждения 5 град/час на кристаллодержателе образуется друза, представляющая собой сросток мелких пластинчатых кристаллов толщиной 0.1-0.2 мм (рис. 4). При снижении скорости охлаждения до 1 град/час размер пластин в друзе возрастает (максимальная толщина пластин 0.4-0.5 мм).

Приложение электрического поля напряжением 0.15~B приводит к формированию на Pt-стержне простых соединений (R=0.05~ град/час.), причем направление протекания электрического тока в системе не играет никакой роли: в обоих случаях кристаллизовались только фазы Li_2MoO_4 и Li_2GeO_3 (табл. 4).

Рис. 4. Кристаллы Li_2TiGeO_5 (а - V=0 B, R=1 град/час; б - V=0.5 B, R=0.05 град/час, Pt-стержень - анод).

Таблица 4. Кристаллические фазы, синтезированные в системе $\text{Li}_2\text{TiGeO}_5 - \text{Li}_2\text{MoO}_4 - \text{Li}_2\text{WO}_4$.

No	V,	R,	Полученные фазы			
п/п	B,	град/ час	Рt-стержень – катод	Рt-стержень – анод		
1	0	1	Li ₂ TiGeO ₅ (5х3х0.2 мм)			
2	0.15	0.05	Li ₂ MoO ₄	Li ₂ MoO ₄ , Li ₂ GeO ₃		
3	0.5	0.05- 1	Li ₂ TiGeO ₅ (5х5х0.1 мм)	Li ₂ TiGeO ₅ (5х5х0.4 мм)		
4	0.8	0.05	Li ₂ TiGeO ₅ (15x10x1 мм)	Li ₂ TiGeO ₅ (20х15х2 мм)		

Увеличение напряжения прикладываемого к системе электрического поля до V=0.5~B при отрицательном знаке потенциала на затравочном стержне приводит к осаждению кристаллов на дне тигля (R=0.05~ град/час). Попытка еще больше «утяжелить» расплав путем введения дополнительного количества Li_2WO_4 не привела к «всплыванию» образующихся кристаллов. При увеличении скорости охлаждения системы до 1~ град/час, на кристаллодержателе образуются кристаллы $Li_2TiGeO_5~$ толщиной примерно

0.3 мм. Кристаллы формируются только у поверхности расплава, на границе раздела расплав-воздух.

При смене знака полярности Pt-стержня на <u>положительный</u> и быстром охлаждении системы (R=1 град/час) кристаллы $\text{Li}_2\text{TiGeO}_5$ образуются на стержне, но, как и в предыдущем случае, только на поверхности расплава. Бесцветные и прозрачные кристаллы, выращенные с такой скоростью, имели толщину менее 0.1 мм. Уменьшение скорости охлаждения до 0.05°C/час привело к образованию на стержне кристаллов толщиной до 0.5 мм. Дальнейшая выдержка при температуре кристаллизации приводит к разрастанию були вплоть до стенок тигля (рис. 4 б).

При дальнейшем увеличении напряжения до $0.8\,\mathrm{B}$ (при той же скорости $0.05\,\mathrm{град/чаc}$) на отрицательно заряженном Pt-стержне кристаллизовалась друза, состоящая из прозрачных пластинчатых кристаллов $\mathrm{Li_2TiGeO_5}$ размером до $20\,\mathrm{mm}$ и толщиной порядка $1\,\mathrm{mm}$. При смене полярности Pt-стержня на нем кристаллизовались кристаллы $\mathrm{Li_2TiGeO_5}$ размером до $4\,\mathrm{cm}$ и толщиной порядка $2\,\mathrm{mm}$ (рис. $4\,\mathrm{s}$).

На основе данных, полученных в этой серии опытов, можно сделать вывод, что приложение электрического поля (при $V>0.15\,\mathrm{B}$) не даёт изменений в фазовом и химическом составе получаемых кристаллов, однако коренным образом влияет на область зарождения и последующий рост кристаллов, причем еще большее «утяжеление» расплава не влияет на результат экспериментов.

Толщина пластинок (скорость роста в направлении, перпендикулярном плоскости пластины) возрастала при постоянном R с увеличением напряжения.

Ионная проводимость Li₂TiGeO₅

Температурные зависимости ионной проводимости кристаллов Li_2TiGeO_5 представлены на рис. 5. Как видно, проводимость полученных

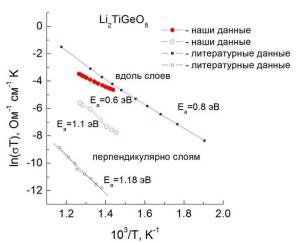


Рис. 5. Ионная проводимость выращенных монокристаллов Li_2TiGeO_5

кристаллов, измеренная вдоль слоев кристаллической структуры плоскости ab), хорошо согласуется с литературными данными. Проводимость кристаллов перпендикулярном К СЛОЯМ направлении (по оси c) существенно выше опубликованных в литературе; по-видимому, наложение электрического приводит к ПОЛЯ внедрению В межслоевые пространства примесных атомов, что сказывается на транспортных характеристиках.

$\underline{Cucmema\ La_2O_3 - MoO_3 - Li_2MoO_4}$

Выращивание кристаллов $Li_xLa_yMoO_z$.

В базовой системе $La_2O_3-MoO_3$ известно соединение $La_2Mo_2O_9-$ ионный проводник с проводимостью по ионам кислорода, однако введение в систему в качестве растворителей солей щелочных металлов приводит к образованию соединений смешанного состава, для которых и было исследовано влияние прилагаемого электрического поля на кристаллизацию.

В результате предварительных экспериментов определены температура полного расплавления шихты в системе $3 \text{ La}_2\text{O}_3: 3 \text{ MoO}_3: 4 \text{ Li}_2\text{MoO}_4$ и оптимальная скорость кристаллизации $\text{Li}_x\text{La}_y\text{MoO}_z$, составившие $1000-1020^{\circ}\text{C}$ и 1.5 град/час соответственно. Кристаллы образовывались только в объёме расплава; в основном это кристаллы с линейными размерами до 0.5 мм; более крупные кристаллы (до 1 мм) были обнаружены только в области контакта 1 Pt-стержня и расплава (рис. 1 6)

Рис. 6. Кристаллы $Li_{0.49}La_{0.52}MoO_{4.03}$, полученные в объёме расплава при V= 0 B (a); Li_2MoO_4 на Pt-стержне-катоде при V= 0.8 B (б); $Li_{0.55}La_{0.47}MoO_{3.98}$ в объёме расплава при V= 0.8 B, Pt-стержень – катод (в).

По рентгенодифракционным данным бесцветные кристаллы бипирамидальной формы, полученные без наложения электрического поля, имеют состав $La_{0.5625}Li_{0.3125}MoO_4$ (JCDD 78-2029).

Результаты экспериментов в системе $La_2O_3-MoO_3-Li_2MoO_4$ с наложением электрического поля представлены в табл. 5.

Таблица 5. Кристаллические фазы, синтезированные в системе $La_2O_3 - Li_2Mo_3O_{10}$.

$N_{\underline{0}}$	V, B	Полученные фазы			
опыта	V, D	Pt-стержень – катод	Pt-стержень – анод		
1	0	Кристаллы Li _{0.49} La _{0.52} MoO _{4.03} в объёме расплава			
2	0.15	Аморфный слиток			
3	0.5	$Li_{0.49}La_{0.49}MoO_{3.98}$	${\rm Li_{0.48}La_{0.49}MoO_{3.97}}$		
		$\mathrm{Li_2MoO_4}$			
4	0.8	Li _{0.55} La _{0.47} MoO _{3.98} (на дне	${\rm Li_{0.59}La_{0.44}MoO_{3.96}}$		
		тигля)			

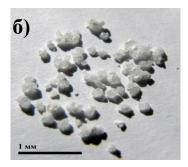
Приложение электрического поля напряжением $0.15\,\mathrm{B}$ приводит к полному застыванию расплава в виде аморфной массы, кристаллы в объеме расплава не образовывались. При напряжении $0.5\,\mathrm{B}$ на стержне кристаллов были найдены кристаллы составов $\mathrm{Li}_{0.49}\mathrm{La}_{0.49}\mathrm{MoO}_{3.98}$ (для случая Pt-стержень – катод) и $\mathrm{Li}_{0.48}\mathrm{La}_{0.49}\mathrm{MoO}_{3.97}$ (в случае, когда Pt-стержень - анод). Таким образом, можно сделать вывод, что приложение внешнего электрического поля к системе и изменение направления протекания тока не влияют на состав растущих кристаллов. Однако электрическое поле влияет на размер и качество полученных кристаллов: в опытах без приложения электрического поля кристаллы образовывались в объеме расплава и по размеру не превышали $0.5\,\mathrm{mm}$, тогда как в условиях наложенного электрического поля размер полученных кристаллов достигал $2-3\,\mathrm{mm}$. В обоих случаях в объеме застывшего расплава присутствовали мелкие (размером до $0.5\,\mathrm{mm}$) кристаллы того же состава.

Увеличение напряжения прикладываемого поля до $0.8\,\mathrm{B}$ не меняет состав полученных кристаллов: он остается тем же — $\mathrm{Li_{0.55}La_{0.47}MoO_{3.98}}$. Направление протекания тока также не влияет на фазовый и химический состав получаемых кристаллов: на катоде образуются кристаллы состава $\mathrm{Li_{0.55}La_{0.47}MoO_{3.98}}$, а на аноде — $\mathrm{Li_{0.59}La_{0.44}MoO_{3.96}}$. Размер получаемых кристаллов увеличивается и достигает 5–7 мм. Однако в случае, когда Ртстержень являлся катодом, кристаллы образовывались на дне тигля, тогда как на стержне кристаллизовались кристаллы $\mathrm{Li_2MoO_4}$ в виде сросшихся пластинок (рис. 6 в). При данном напряжении и направленности поля расплав поверхностное натяжение уменьшается, что приводит к большему смачиванию стенок Рt тигля и стержня и вытеканию расплава из тигля.

Впервые измеренная на кристаллах $Li_{0.55}La_{0.47}MoO_{3.98}$ ионная проводимость составила $5*10^{-6}~Om^{-1}~cm^{-1}$ при 500K.

<u>Система $Y_2O_3 - Yb_2O_3 - Al_2O_3 - B_2O_3 - K_2Mo_3O_{10}$.</u>

Выращивание кристаллов $\bar{Y}_{1-x}Yb_xA\bar{l}_3(\bar{B}O_3)_4$.


Оксиды иттрия и иттербия были взяты в эквимолярных количествах, в расчёте на получение твёрдого раствора состава $Y_{0.5}Yb_{0.5}Al_3(BO_3)_4$. Массовое отношение «растворяемое вещество/растворитель» составляло 1:2, температурный диапазон от 1050 до 950-930°C. Результаты представлены в табл. 6.

Первая серия опытов была проведена без приложения электрического тока к системе при разной скорости охлаждения. При скорости охлаждения системы 5° С/час на стержне образовалась друза, состоящая из пластинчатых кристаллов $KY(MoO_4)_2$, между которыми фиксировали поликристаллический оксид молибдена (рис. 7), что связано, по-видимому, с большой скоростью охлаждения системы и испарением MoO_3 из расплава.

При понижении скорости охлаждения системы до 1 град/час на стержне росли кристаллы Y,Yb,Al-бората состава $Y_{0.77}Yb_{0.23}Al_3(BO_3)_4$. Размер кристаллов составлял до 1 мм (рис. 7б).

Вторая серия опытов проводилась также со скоростью охлаждения системы 5 град/час, но с разным направлением протекания электрического тока при приложенном напряжении $0.5\ B.\ B$ случае, когда Pt-стержень являлся анодом, на нем кристаллизовалась щетка, состоящая из тонких игольчатых кристаллов серого цвета $KY(MoO_4)_2$ и $KYb(MoO_4)_2$. Во втором случае на Pt-стержне-«катоде» кристаллизовались единичные кристаллы бората состава $Y_{0.78}Yb_{0.22}Al_3(BO_3)_4$.

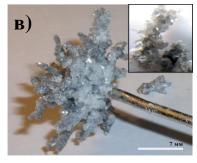


Рис. 7. Друза пластинчатых кристаллов $KY(MoO_4)_2$, между которыми заключен поликристаллический MoO_3 , R=5 град/час (а); кристаллы $Y_{0.77}Yb_{0.23}Al_3(BO_3)_4$, R=5 град/час (б); кристаллы $Y_{0.89}Yb_{0.11}Al_3(BO_3)_4$, V=0.8 B, R=5 град/час (в).

Таблица 6. Кристаллические фазы, синтезированные в системе $Y_2O_3 - Yb_2O_3 - Al_2O_3 - B_2O_3 - K_2Mo_3O_{10}$

Наблюдаемые изменения при приложении электрического тока					
Хар-ка	Постоянный ток				
	бар жама	с током			
	без тока	V, B	Стержень-анод	Стержень-катод	
Изменение хим. состава и	$Y_{0.77}Yb_{0.23}Al_3(BO_3)_4$	0.5	Тонкопластинчатые кристаллы $KY(MoO_4)_2$, $KYb(MoO_4)_2$	изометричные кристаллы Y _{0.78} Yb _{0.22} Al ₃ (BO ₃) ₄	
морфологии		0.8 R= 5°С/ч	Пластинчатые кристаллы $KY(MoO_4)_2$, игольчатые кристаллы MoO_3	изометричные кристаллы размером < 1 мм $Y_{0.89}Yb_{0.11}Al_3(BO_3)$	
Изменение размера кристаллов	$Y_{0.77}Yb_{0.23}Al_3(BO_3)_4$	0.8 R= 1°С/ч	KY(MoO ₄) ₂ , MoO ₃	друза $Y_{0.95}Yb_{0.05}Al_3(BO_3)_4$ размер кристаллов ≤ 3 мм спонтанная кристаллизация на дне тигля $Y_{0.96}Yb_{0.04}Al_3(BO_3)_4$ размер кристаллов < 1 мм	

Третья серия опытов была проведена с напряжением 0.8 В. В опыте, когда Рt-стержень являлся анодом, на стержне кристаллизовалась фаза $KY(MoO_4)_2$; на нем также осаждались микроиголки Mo_2O_3 в кристаллической ваты. При изменении полярности Pt-стержня и сохранении скорости охлаждения системы в 5 град/час на нем кристаллизовалась друза, состоящая из кристаллов $Y_{0.89}Yb_{0.11}Al_3(BO_3)_4$ размером до 1 мм (рис. 7в). Попытка увеличить размер получаемых в этом опыте кристаллов с помощью понижения скорости охлаждения ростовой системы до 1 град/час привела к содержанием кристаллов меньшим иттербия получению c эксперименте $Y_{0.95}Yb_{0.05}Al_3(BO_3)_4$. Кроме того, в этом на дне тигля кристаллизовались мелкие, размером менее 1 мм, кристаллы состава $Y_{0.96}Yb_{0.04}Al_3(BO_3)_4$

Состав всех синтезированных в системе $Y_2O_3-Yb_2O_3-Al_2O_3-B_2O_3-K_2Mo_3O_{10}$ кристаллов был определен с помощью монокристального рентгенографического метода.

Приведенные в Главе III данные позволяют сформулировать следующие выводы:

Полученные результаты показывают, что приложение электрического поля в процессе роста кристаллов в системе существенно меняет протекание процесса роста и конечные продукты кристаллизации, что реализуется в:

- **изменении типа и состава** кристаллизующегося на кристаллодержателе соединения в зависимости от наличия электрического поля, его напряжения и полярности (системы $\text{Li}_3\text{PO}_4 \text{Li}_4\text{GeO}_4 \text{Li}_2\text{MoO}_4 \text{LiF}$, $\text{La}_2\text{O}_3 \text{MoO}_3 \text{Li}_2\text{MoO}_4$, $\text{Li}_2\text{TiGeO}_5 \text{Li}_2\text{MoO}_4 \text{Li}_2\text{WO}_4$, $\text{Y}_2\text{O}_3 \text{Yb}_2\text{O}_3 \text{Al}_2\text{O}_3 \text{B}_2\text{O}_3 \text{K}_2\text{Mo}_3\text{O}_{10}$);
- изменении размеров и морфологии кристаллов (скорости роста) (системы $Li_2TiGeO_5 Li_2MoO_4 Li_2WO_4$, $La_2O_3 MoO_3 Li_2MoO_4$, $Y_2O_3 Yb_2O_3 Al_2O_3 B_2O_3 K_2Mo_3O_{10}$);
- **изменении величины тока** при постоянном напряжении прикладываемого поля (0.8 В) (системы $\text{Li}_3\text{PO}_4 \text{Li}_4\text{GeO}_4 \text{Li}_2\text{MoO}_4 \text{LiF}$, $\text{La}_2\text{O}_3 \text{MoO}_3 \text{Li}_2\text{MoO}_4$);
- **понижении температуры гомогенизации** расплава при приложении к системе переменного «пилообразного» электрического тока при сохранения в пределах точности определения содержания лития в твердых растворах (системы $\text{Li}_3\text{PO}_4 \text{Li}_4\text{GeO}_4 \text{Li}_2\text{MoO}_4 \text{Li}_F$);
- формировании новых фаз с участием компонентов растворителя (система $Li_3PO_4-Li_4GeO_4-Li_2MoO_4-LiF$);
- **изменение** локализации преимущественного зарождения и роста кристаллов (кристаллодержатель анод, кристаллодержатель катод, придонная область) (системы $\text{Li}_2\text{CO}_3 \text{TiO}_2 \text{GeO}_2 \text{Li}_2\text{MoO}_4 \text{Li}_2\text{WO}_4$, $Y_2\text{O}_3 Yb_2\text{O}_3 \text{Al}_2\text{O}_3 \text{B}_2\text{O}_3 \text{K}_2\text{Mo}_3\text{O}_{10}$).

Отметим существенное изменение параметров процесса кристаллизации при незначительном внешнем воздействии (V<1 B), что

необходимо учитывать при разработке технологии роста практически важных кристаллов.

Наибольшее влияние дополнительного внешнего электрического поля проявляется в системах, в которых кристаллизуются твердые электролиты с высокой катионной проводимостью.

ГЛАВА IV. Рентгенографические исследования

Кристаллическая структура $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$.

Для определения кристаллической структуры был получен трехмерный набор дифракционных отражений (монокристальный дифрактометр Nonius Kappa CCD, MoK_{α} излучение, $\lambda = 0.71073$ Å, 1212 отражений) при комнатной температуре. На его основе уточнены параметры ромбической ячейки: $a=10.645(2),\ b=6.175(1),\ c=5.009(1)$ Å, $Z=4,\ R_F$ 0.0137 для 634 независимых отражений. Поправка на поглощение была введена с учетом формы кристалла. Определение структуры проведено на основе прямых методов в пр. гр. Pnma (комплекс программ SHELX-97) с последующим уточнением (программа JANA2000).

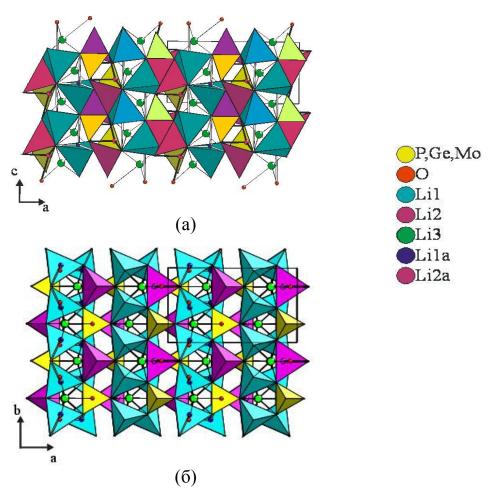


Рис. 8. Проекции кристаллической структуры $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ на плоскости ac (a) и ab (б).

Полученные данные показали изоструктурность синтезированного соединения с ${\rm Li_{3.31}P_{0.69}Ge_{0.31}O_4}$ (далее **I**). Как и в случае **I**, основу кристаллической структуры исследованных кристаллов составляет каркас, построенный из тетраэдров (P,Ge,Mo)O₄ и LiO₄. Количество дополнительных катионов Li в исследованном соединении почти вдвое меньше, чем в **I**, что может быть объяснено вхождением в его структуру атомов ${\rm Mo}^{6+}$. Три из дополнительных позиций, занятых атомами Li в структуре I, полученного в тех же условиях, что и исследованные кристаллы, но без наложения электрического поля, сохраняются и в структуре ${\rm Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4}$, однако меняется их заселенность.

Литий занимает две основные кристаллографически неэквивалентные тетраэдрические позиции, как и в структуре **I** (заселены не полностью) и 3 дополнительные. Заселенность двух дополнительных тетраэдрических позиций Li(1a) и Li(2a) в структуре Li_{3.17}($P_{0.69}Ge_{0.24}Mo_{0.07}$)O₄ составляет 0.038 и 0.028, что значительно ниже по сравнению с **I** (0.102 и 0.082). В то же время заселенность дополнительной октаэдрической позиции Li(3) в структуре Li_{3.17}($P_{0.69}Ge_{0.24}Mo_{0.07}$)O₄ значительно выше (0.097) по сравнению со значением 0.063 в **I**. Позиция Li(4), обнаруженная в **I**, не локализована в исследованных кристаллах Li_{3.17}($P_{0.69}Ge_{0.24}Mo_{0.07}$)O₄. Таким образом, как и в **I**, все атомы Li в структуре Li_{3.17}($P_{0.69}Ge_{0.24}Mo_{0.07}$)O₄ разупорядочены, меняется только количественное соотношение Li в основных и дополнительных позициях.

Проекции кристаллической структуры $\text{Li}_{3.17}(\text{P}_{0.69}\text{Ge}_{0.24}\text{Mo}_{0.07})\text{O}_4$ на плоскости ac (a) и ab (б) представлены на рис. 8.

Полученные нами структурные данные нового синтезированного соединения $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ депонированы в банке данных неорганических соединений (ICSD) под номером 415976.

<u>Высокотемпературные рентгеноструктурные исследования</u> $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4.$

Высокотемпературные исследования были предприняты в связи с обнаружением (данные ДТА) фазового перехода при температуре 600° С. Уточнение структуры $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ проводилось в пр. гр. *Pnma* по экспериментальным дифракционным данным, собранным при T=25, 150, 300, 450, 600°С. За исходную модель уточнения была принята структура $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ при комнатной температуре. Для описания формы пиков использовалась функция Пирсон-VII. Все расчеты проводились по программе WYRIETE версии 3.3 и FullProf. Уточнение выполнялось путем постепенного добавления уточняемых параметров при постоянном графическом моделировании фона.

Параметры a, b, c и объём V элементарной ячейки возрастают с увеличением температуры (табл. 7). Наибольшее увеличение наблюдается для параметра $a - \Delta a = 0.1135 \text{Å}$, в то время как параметры b и c изменяются

примерно одинаково: $\Delta b = 0.0769 \text{Å}$, $\Delta c = 0.0753 \text{Å}$. Объём ячейки увеличивается на $\Delta V = 12.71 \text{Å}^3$.

При повышении температуры в интервале $25\text{-}600^{\circ}\text{C}$ координаты атомов в структуре $\text{Li}_{3.17}(P_{0.69}\text{Ge}_{0.24}\text{Mo}_{0.07})\text{O}_4$ практически не изменяются, а изотропные температурные факторы увеличиваются. Коэффициенты линейного (теплового) расширения, рассчитанные по формуле:

$$\alpha = \frac{x_2 - x_1}{x_1 (T_2 - T_1)},$$

где x_2 и x_1 – значения параметра при температурах T_2 и T_1 соответственно, составляют: $\Delta \alpha_a = 1.86 \cdot 10^{-5}$, $\Delta \alpha_b = 2.12 \cdot 10^{-5}$, $\Delta \alpha_c = 2.59 \cdot 10^{-5}$, $\Delta \alpha_V = 2.96 \cdot 10^{-5}$ K^{-1} .

Данные ДТА, результаты расчета параметров элементарной ячейки нового соединения (табл. 7), характерный скачок изотропных температурных факторов при 600° С позволили предположить, что фазовый переход при 600° С связан с перестройкой кристаллической структуры $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$.

Таблица 7. Структурные параметры ортофосфата лития и его аналогов.

Состав	Пр.гр.	Параметры элементарной ячейки		
Cociab		a, Å	b, Å	c, Å
γ-Li ₃ PO ₄ *	Pnma	10.483	6.129	4. 926
Li _{3+x} P _{1-x} Ge _x O ₄ **	Pnma	10.690(1)	6.195(7)	5.027(6)
$Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ LT-модификация, T = 25 $^{\circ}C$	Pnma	10.645(2)	6.175(1)	5.009(1)
$Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ HT-модификация, T = $700^{\circ}C$		9.670(5)	11.755(6)	14.520(7)

^{*}Якубович О.В., Урусов В.С. // Кристаллография,1997, 42, 301-308.

На основании проведенных исследований можно заключить, что ионы Li постепенно мигрируют из основных кристаллографических позиций Li1 и Li2 в дополнительные тетраэдрические позиции Li1a и Li2a; кроме того, часть ионов Li переходит и в позиции Li3 и Li4. Таким образом, серия высокотемпературных исследований и последующее уточнение структур методом Ритвельда позволяет указать возможные пути перемещения междоузельных атомов Li в подрешетке исследуемого вещества.

$\underline{\mathit{Kpucmaллические\ cmpyкmypы\ }} Y_{1-x}Yb_xAl_3(BO_3)_4.$

Структурные исследования монокристаллов, синтезированных в системе Y2O3- Yb2O3- Al2O3 - (B2O3 - K2Mo3O10), были предприняты

^{**} Рабаданов М.Х., Петрашко А., Киреев В.В., Иванов-Шиц А.К., Симонов В.И. // Кристаллография. 2003. Т. 48. № 4. С. 640.

для определения точного соотношения катионов Y и Yb в твердых растворах YxYb1-xAl3(BO3)4.

Все синтезированные соединения изоструктурны с $YAl_3(BO_3)_4$, однако некоторые из них характеризуются различным соотношением катионов иттрия и иттербия, статистически замещающих друг друга в одной позиции.

Таблица 8. Основные кристаллографические характеристики полученных соединений (тригональная сингония, пр.гр. R32, Z=3).

Состав кристаллов	Параметры ячейки, Å	Общее число рефлексов (независимых рефлексов)	$R(F)/WR(F^2)$
$Y_{0.77}Yb_{0.23}Al_3(BO_3)_4$	a = 9.2764(3) c = 7.2274(2)	6348 (434)	0.0086/ 0.0192
$Y_{0.78}Yb_{0.22}Al_3(BO_3)_4$	a = 9.2821(3) c = 7.2301(2)	4864 (379)	0.0173/ 0.0333
$Y_{0.89}Yb_{0.11}Al_3(BO_3)_4$	a = 9.2762(2) c = 7.2224(2)	6091 (433)	0.0138/ 0.0361
$Y_{0.96}Yb_{0.04}Al_3(BO_3)_4$	a = 9.2707(3) c = 7.2226(3)	6468 (434)	0.0112/ 0.0244
$Y_{0.95}Yb_{0.05}Al_3(BO_3)_4$	a = 9.2834(2) c = 7.2298(1)	6089 (435)	0.0106/ 0.0219

Выводы:

- 1. Исследовано влияние одновременного наложения электрического и теплового полей на процессы и продукты кристаллизации при растворрасплавной кристаллизации в системах $Li_3PO_4 Li_4GeO_4 Li_2MoO_4 LiF$; $Li_2TiGeO_5 Li_2MoO_4 Li_2WO_4$; $La_2O_3 MoO_3 Li_2Mo_3O_{10}$; $Y_2O_3 Yb_2O_3 Al_2O_3 B_2O_3 K_2Mo_3O_{10}$.
- 2. Разработана методика роста кристаллов твердых электролитов из раствора в расплаве при одновременном воздействии электрического и теплового полей.
- 3. Показано, что незначительное внешнее воздействие (V<1 B) приводит к существенному изменению параметров процесса, что необходимо учитывать при разработке технологии роста практически важных кристаллов.
 - Приложение электрического поля в процессе роста кристаллов в системе «кристалл-расплав» существенно меняет протекание процесса роста и конечные продукты кристаллизации, что реализуется в:
 - изменении типа и состава кристаллизующегося на кристаллодержателе соединения в зависимости от наличия электрического поля, его напряжения и полярности (системы $Li_3PO_4 Li_4GeO_4 Li_2MoO_4 LiF$,

- $La_2O_3 MoO_3 Li_2MoO_4$; $Li_2TiGeO_5 Li_2MoO_4 Li_2WO_4$, $Y_2O_3 Yb_2O_3 Al_2O_3 B_2O_3 K_2Mo_3O_{10}$);
- изменении размеров и морфологии кристаллов (скорости роста) (системы $Li_2TiGeO_5-Li_2MoO_4-Li_2WO_4$, $La_2O_3-MoO_3-Li_2MoO_4$ $Y_2O_3-Y_2O_3-Y_2O_3-X_2O_3-X_2O_3$);
- изменении величины тока при постоянном напряжении прикладываемого поля (системы $Li_3PO_4-Li_4GeO_4-Li_2MoO_4-LiF$, $La_2O_3-MoO_3-Li_2MoO_4$);
- понижении температуры гомогенизации расплава при приложении к системе «пилообразного» электрического тока при сохранения в пределах точности определения содержания лития в твердых растворах (системы $\text{Li}_3\text{PO}_4 \text{Li}_4\text{GeO}_4 \text{Li}_2\text{MoO}_4 \text{Li}_F$);
- формировании новых фаз с участием компонентов растворителя (система $Li_3PO_4 Li_4GeO_4 Li_2MoO_4 LiF$)
- изменение локализации преимущественного зарождения и роста кристаллов (кристаллодержатель-анод, кристаллодержатель-катод, придонная область) (системы $Li_2TiGeO_5 Li_2MoO_4 Li_2WO_4$; $Y_2O_3 Yb_2O_3 Al_2O_3 B_2O_3 K_2Mo_3O_{10}$).
- 4. Синтезирована новая кристаллическая фаза $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ со структурой типа γ - Li_3PO_4 . На кристаллах $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ проведены исследования кристаллической структуры при $T=25^{\circ}C$ ($a=10.645(2),\ b=6.175(1),\ c=5.009(1)$ Å, пр.р. $Pnma;\ Z=4$), рассмотрены пути миграции ионов Li в структуре.
- 5. Получены данные по проводимости кристаллической фазы $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$. Впервые измерена ионная проводимость монокристаллов $Li_{0.55}La_{0.47}MoO_{3.98}$.
- 6. Методом Ритвельда уточнена кристаллическая структура $\text{Li}_{3.17}(\text{P}_{0.69}\text{Ge}_{0.24}\text{Mo}_{0.07})\text{O}_4$ при комнатной и повышенных температурах. С увеличением температуры в интервале 25-600°C параметры и объем элементарной ячейки возрастают ($\Delta a = 0.1135$, $\Delta b = 0.0769$, $\Delta c = 0.0753$ Å. $\Delta V = 12.71$ Å³). Коэффициенты линейного (теплового) расширения составляют: $\alpha_a = 1.86 \cdot 10^{-5}$, $\alpha_b = 2.12 \cdot 10^{-5}$, $\alpha_c = 2.59 \cdot 10^{-5}$, $\alpha_V = 2.96 \cdot 10^{-5} \text{K}^{-1}$.
- 7. При $T=600^{\circ}$ С зафиксировано появление новой высокотемпературной фазы $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$ (a=9.670(5), b=11.755(6), c=14.520(7) Å). При $T=700^{\circ}$ С получена дифрактограмма новой высокотемпературной модификации $Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O_4$.

Основные результаты работы изложены в следующих публикациях:

- **1.** Л.Н. Демьянец, А.К. Иванов-Шиц, В.В. Киреев, Д.А. Ксенофонтов. Влияние электрического поля на кристаллизацию в системе Li_3PO_4 − $\text{LI}_4\text{G eO}_4$ − Li_2MoO_4 − Li_7 . Неорганические материалы, 2004, том 40, № 8, 1001-1005.
- **2.** Д.А. Ксенофонтов, Н.В. Зубкова, Д.Ю. Пущаровский, Л.Н. Демьянец, У. Колич, Е. Тиллманнс, А.К. Иванов-Шиц. Синтез и кристаллическая

- структура $\text{Li}_{3.17}(P_{0.69}\text{Ge}_{0.24}\text{Mo}_{0.07})\text{O}_4$. // Кристаллография, 2006, 51(3), 425-428.
- **3.** М.Х. Рабаданов, Д.А. Ксенофонтов, Н.В. Зубкова, А.А. Симонов. Особенности атомного строения монокристаллов семейства твердых растворов γ-Li_{3+x}(P,Ge,Mo)O₄. // Сб. трудов Международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах». Махачкала, Дагестан, 2007, 315-317.
- **4.** Д.А. Ксенофонтов, Л.Н. Демьянец, А.К. Иванов-Шиц. Влияние электрического поля на рост кристаллов в системе $Li_3PO_4 Li_4GeO_4 Li_2MoO_4 LiF$. // Неорганические материалы, 2008, 44(10), 1244 -1249.
- **5.** Д.А. Ксенофонтов, Ю.К. Кабалов, Л.Н. Демьянец. Изменение кристаллической структуры германий-замещенного литиофосфата при нагревании. // Кристаллография, 2010, 55(2), 277–282.
- **6.** L.N. Demianets, A.K. Ivanov-Schitz, D.A. Ksenofontov. Electrical current-assisted flux growth of inorganic crystals in the system Li₃PO₄-Li₄GeO₄-Li₂MoO₄-LiF. // Abs. 14th "Int. Conf. Crystal Growth", 2004, Grenoble, France, P. 156.
- 7. D.A. Ksenofontov, L.N. Demianets, A.K. Ivanov-Schitz, V.V. Kireev. Influence of the electrical field on crystal growth in the system Li₃PO₄ Li₄GeO₄ Li₂MoO₄ LiF. // Abs. 22nd European Crystallographic Meeting (ECM22), 2004, Budapest, Hungary, P.281.
- **8.** D.A. Ksenofontov, L.N. Demianets, A.K. Ivanov-Schitz. Crystal growth in the system Li₃PO₄ Li₄GeO₄ Li₂MoO₄ LiF under the influence of the electrical field. // Abs. Int. Jubilee Conference "Single crystals and their application in the XXI century 2004", 2004, VNIISIMS, Alexandrov, P. 194.
- **9.** D.A. Ksenofontov, L.N. Dem'yanets. Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O₄ crystal growth under the influence of the electrical field. // Abs. Int. Conference on "CRYSTAL MATERIALS'2005" (ICCM'2005), May 30 June 02, 2005, Kharkov, Ukraine, P. 112.
- **10.**D.A. Ksenofontov, L.N. Dem'yanets, N.V. Zubkova, A.K. Ivanov-Schitz, D.Yu. Pushcharovsky. Li_{3.17}(P_{0.69}Ge_{0.24}Mo_{0.07})O₄: growth under electrical field and the structure. // Abs. XX Congress of the International Union of Crystallography. Congress and General Assembly. Florence, Italy. 2005, P. 440-441.
- **11.**Д.А. Ксенофонтов, Н.В. Зубкова, Л.Н. Демьянец, А.К. Иванов-Шиц. Монокристаллы $\text{Li}_{3.17}(\text{P}_{0.69}\text{Ge}_{0.24}\text{Mo}_{0.07})\text{O}_4$: рост под воздействием электрического поля и кристаллическая структура. // Тезисы XXII национальной конференции по росту кристаллов (НКРК-2006) Москва, Россия, 2006, С. 179.
- **12.**М.Х. Рабаданов, Н.В. Зубкова, Д.А. Ксенофонтов. Атомная структура монокристаллов твердых растворов γ -Li_{3+x}(PGeMo)O₄. // Расширенные тезисы конференции «Структура и свойства твердых тел». Россия, Нижний Новгород, 2006, С. 6-8.

- **13.**D.A. Ksenofontov, L.N. Dem'yanets, A.K. Ivanov-Schitz. Electrical current-induced growth of γ-Li₃PO₄-type single crystals from flux. // Abs. 11th European Conference On Solid State Chemistry (ECSSC XI). Caen, France, 2007, P. 242.
- **14.**Д.А. Ксенофонтов, Л.Н. Демьянец, А.К. Иванов-Шиц. Кристаллизация Li₂TiGeO₅ из раствора в расплаве под воздействием электрического поля. // Тезисы докладов XIII Национальной конференции по росту кристаллов НКРК-2008, Москва, С.61.
- **15.**Д.А. Ксенофонтов, Ю.К. Кабалов, Л.Н. Демьянец. Литиофосфат: рост кристаллов в необычных условиях и уточнение структуры методом Ритвельда. Тезисы 7-ого Международного симпозиума «Минералогические музеи». Санкт-Петербург, Россия, 2008, 112-114.

Благодарности.

Автор выражает глубокую благодарность д.х.н. Демьянец Л.Н. и д.х.н. Иванову-Шицу А.К. за внимательное руководство и постоянную помощь на всех этапах выполнения работы. Автор приносит искреннюю благодарность акад. Д.Ю. Пущаровскому, к.г.-м.н. Ю.К. Кабалову, к.г.-м.н. Н.В. Зубковой, Закалюкину, A.K. Шапиро, к.х.н. P.M. к.х.н. Ю.М. Мининзону, В.В.Гребеневу а также всем сотрудникам Лаборатории кристаллизации из высокотемпературных растворов ИКРАН и кафедры Кристаллографии и кристаллохимии МГУ, оказавшим содействие в выполнении данного исследования. Исследование ряда образцов стало возможно сотрудничестве с коллегами из Университета Вены (Австрия), которым автор выражает глубокую признательность.